gpt4 book ai didi

python - "from utils import label_map_util"导入错误 : cannot import name 'label_map_util'

转载 作者:行者123 更新时间:2023-12-04 14:34:23 26 4
gpt4 key购买 nike

当我运行此代码时,出现导入错误

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

import cv2
cap = cv2.VideoCapture("ipr.mp4")

from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90



opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())



detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')



label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)


def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)


PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

IMAGE_SIZE = (12, 8)



with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)

cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break

错误:

warning: Error opening file (/build/opencv/modules/videoio/src/cap_ffmpeg_impl.hpp:834) warning: ipr.mp4 (/build/opencv/modules/videoio/src/cap_ffmpeg_impl.hpp:835) Traceback (most recent call last): File "test.py", line 31, in from utils import label_map_util ImportError: cannot import name 'label_map_util'

最佳答案

CD到object_detection目录

import( os )
os.chdir( 'D:\\projects\\data core\\helmet detection\\models\\research\\object_detection' )

并更改这些行
from utils import label_map_util

from utils import visualization_utils as vis_util

到以下几行
from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util

它会起作用。

来源: https://github.com/tensorflow/models/issues/1990

关于 python - "from utils import label_map_util"导入错误 : cannot import name 'label_map_util' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51569669/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com