gpt4 book ai didi

scala - Spark 结构化流 + Kafka 集成 : MicroBatchExecution PartitionOffsets Error

转载 作者:行者123 更新时间:2023-12-04 14:22:16 24 4
gpt4 key购买 nike

我使用 Spark Structured Streaming 分别使用下面的 scala 代码处理传入和传出 Apache Kafka 的数据流。

我可以使用 kafka 源成功读取数据流,但是在尝试将流写入 Kafka 接收器时,出现以下错误:

ERROR MicroBatchExecution:91 - Query [id = 234750ca-d416-4182-b3cc-4e2c1f922724, runId = 4c4b0931-9876-456f-8d56-752623803332] terminated with error java.lang.IllegalArgumentException: Expected e.g. {"topicA":{"0":23,"1":-1},"topicB":{"0":-2}}, got 1 {"path":"file:///path/to/file.csv","timestamp":1536564701000,"batchId":0}
at org.apache.spark.sql.kafka010.JsonUtils$.partitionOffsets(JsonUtils.scala:74)
at org.apache.spark.sql.kafka010.KafkaSourceOffset$.apply(KafkaSourceOffset.scala:64)
at org.apache.spark.sql.kafka010.KafkaSource$$anon$1.deserialize(KafkaSource.scala:124)
at org.apache.spark.sql.kafka010.KafkaSource$$anon$1.deserialize(KafkaSource.scala:99)
at org.apache.spark.sql.execution.streaming.HDFSMetadataLog.get(HDFSMetadataLog.scala:198)
at org.apache.spark.sql.kafka010.KafkaSource.initialPartitionOffsets$lzycompute(KafkaSource.scala:129)
at org.apache.spark.sql.kafka010.KafkaSource.initialPartitionOffsets(KafkaSource.scala:97)
at org.apache.spark.sql.kafka010.KafkaSource.getBatch(KafkaSource.scala:207)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$populateStartOffsets$2.apply(MicroBatchExecution.scala:216)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$populateStartOffsets$2.apply(MicroBatchExecution.scala:213)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$populateStartOffsets(MicroBatchExecution.scala:213)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:124)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Expected e.g. {"topicA":{"0":23,"1":-1},"topicB":{"0":-2}}, got 1
{"path":""file:///path/to/file.csv"","timestamp":1536564701000,"batchId":0}
=== Streaming Query ===
Identifier: [id = 234750ca-d416-4182-b3cc-4e2c1f922724, runId = 851d0cd7-aabe-45c8-8a14-94227f90e174]
Current Committed Offsets: {KafkaSource[Subscribe[t]]: {"logOffset":2}}
Current Available Offsets: {KafkaSource[Subscribe[t]]: {"logOffset":3}}

斯卡拉代码:
object spark_kafka_attempt2 {

def main(args: Array[String]) {

val spark = SparkSession
.builder
.appName("spark_kafka_test")
.getOrCreate()

import spark.implicits._

val input_lines = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092,localhost:9093,localhost:9094")
.option("subscribe", "input_stream")
.option("startingOffsets", "earliest")
.load()

val inputStreamSchema = new StructType()
.add("input_id", "long")
.add("timestamp", "timestamp")
.add("type", "string")

val lines = input_lines.selectExpr("CAST(value AS STRING)", "CAST(timestamp AS TIMESTAMP)").as[(String, Timestamp)]
.select(from_json($"value", inputStreamSchema).as("data"), $"timestamp".as("arrival_timestamp"))
.select("data.*", "arrival_timestamp")


val query = lines
.selectExpr("CAST(input_id AS STRING) AS key", "to_json(struct(*)) AS value")
.writeStream
.format("kafka")
.outputMode("update")
.option("kafka.bootstrap.servers", "localhost:9092,localhost:9093,localhost:9094")
.option("topic", "processed_stream")
.option("checkpointLocation", "/home/local/directory")
.start()

query.awaitTermination()
}
}

当输出发送到控制台时,代码工作正常,而在尝试将处理过的流发送到 Apache Kafka 时出现错误。

我正在使用 Apache Structured Streaming 2.3.1、Scala 2.11.8 和 Apache Kafka 2.0。

Build.sbt 文件如下:
name := "spark_kafka_test"    
version := "0.1"
scalaVersion := "2.11.8"
val sparkVersion = "2.3.1"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-sql" % sparkVersion,
"org.apache.spark" %% "spark-sql-kafka-0-10" % sparkVersion
)

我正在提交我的工作来触发如下:
./spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.1 --class spark_kafka_test --master local[4] /home/salman/Development/spark_kafka_attempt2/target/scala-2.11/spark_kafka_test_2.11-0.1.jar 

最佳答案

经过大量调查和浏览,我发现以下解决方案将处理后的流写入 kafka sink:

创建以下 KafkaSink 类

import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.spark.sql.ForeachWriter

class KafkaSink(topic:String, servers:String) extends ForeachWriter[(String, String)]
{
val kafkaProperties = new Properties()
kafkaProperties.put("bootstrap.servers", servers)
kafkaProperties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
kafkaProperties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val results = new scala.collection.mutable.HashMap[String, String]
var producer: KafkaProducer[String, String] = _

def open(partitionId: Long,version: Long): Boolean = {
producer = new KafkaProducer(kafkaProperties)
true
}

def process(value: (String, String)): Unit = {
producer.send(new ProducerRecord(topic, value._1 + ":" + value._2))
}

def close(errorOrNull: Throwable): Unit = {
producer.close()
}
}

使用Foreach writer向kafkasink发送数据如下:
val outputDf = lines.selectExpr("CAST(input_id AS STRING) AS key", "to_json(struct(*)) AS value").as[(String, String)]

val topic = "processed_stream"
val brokers = "localhost:9092,localhost:9093,localhost:9094"

val writer = new KafkaSink(topic, brokers)

val query = outputDf
.writeStream
.foreach(writer)
.outputMode("update")
.start()

关于scala - Spark 结构化流 + Kafka 集成 : MicroBatchExecution PartitionOffsets Error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53040640/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com