gpt4 book ai didi

python - 从Pandas数据框中仅解冻列的一部分

转载 作者:行者123 更新时间:2023-12-04 14:21:50 24 4
gpt4 key购买 nike

我有以下示例数据框:

df = pd.DataFrame(data = {'RecordID' : [1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5], 'DisplayLabel' : ['Source','Test','Value 1','Value 2','Value3','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2'],
'Value' : ['Web','Logic','S','I','Complete','Person','Voice','>20','P','Mail','OCR','A','I','Dictation','Understandable','S','I','Web','Logic','R','S']})

这将创建此数据框:
+-------+----------+---------------+----------------+
| Index | RecordID | Display Label | Value |
+-------+----------+---------------+----------------+
| 0 | 1 | Source | Web |
| 1 | 1 | Test | Logic |
| 2 | 1 | Value 1 | S |
| 3 | 1 | Value 2 | I |
| 4 | 1 | Value 3 | Complete |
| 5 | 2 | Source | Person |
| 6 | 2 | Test | Voice |
| 7 | 2 | Value 1 | >20 |
| 8 | 2 | Value 2 | P |
| 9 | 3 | Source | Mail |
| 10 | 3 | Test | OCR |
| 11 | 3 | Value 1 | A |
| 12 | 3 | Value 2 | I |
| 13 | 4 | Source | Dictation |
| 14 | 4 | Test | Understandable |
| 15 | 4 | Value 1 | S |
| 16 | 4 | Value 2 | I |
| 17 | 5 | Source | Web |
| 18 | 5 | Test | Logic |
| 19 | 5 | Value 1 | R |
| 20 | 5 | Value 2 | S |
+-------+----------+---------------+----------------+

我试图将源列和测试列完全不“融化”到新的数据框列中,以使其看起来像这样:
+-------+----------+-----------+----------------+---------------+----------+
| Index | RecordID | Source | Test | Result | Value |
+-------+----------+-----------+----------------+---------------+----------+
| 0 | 1 | Web | Logic | Value 1 | S |
| 1 | 1 | Web | Logic | Value 2 | I |
| 2 | 1 | Web | Logic | Value 3 | Complete |
| 3 | 2 | Person | Voice | Value 1 | >20 |
| 4 | 2 | Person | Voice | Value 2 | P |
| 5 | 3 | Mail | OCR | Value 1 | A |
| 6 | 3 | Mail | OCR | Value 2 | I |
| 7 | 4 | Dictation | Understandable | Value 1 | S |
| 8 | 4 | Dictation | Understandable | Value 2 | I |
| 9 | 5 | Web | Logic | Value 1 | R |
| 10 | 5 | Web | Logic | Value 2 | S |
+-------+----------+-----------+----------------+---------------+----------+

我的理解是,透视和融合将完成整个DisplayLabel列,而不仅仅是某些值。

任何帮助将不胜感激,因为我已经阅读了 Pandas MeltPandas Pivot以及一些关于stackoverflow的引用,但我似乎无法找到一种快速完成此操作的方法。

谢谢!

最佳答案

我们可以通过应用逻辑和数据透视来达到您的结果,我们通过检查DisplayLabel是否包含Value来拆分您的数据,然后再对它们进行join在一起:

mask = df['DisplayLabel'].str.contains('Value')
df2 = df[~mask].pivot(index='RecordID', columns='DisplayLabel', values='Value')

dfpiv = (
df[mask].rename(columns={'DisplayLabel':'Result'})
.set_index('RecordID')
.join(df2)
.reset_index()
)
    RecordID   Result     Value     Source            Test
0 1 Value 1 S Web Logic
1 1 Value 2 I Web Logic
2 1 Value3 Complete Web Logic
3 2 Value 1 >20 Person Voice
4 2 Value 2 P Person Voice
5 3 Value 1 A Mail OCR
6 3 Value 2 I Mail OCR
7 4 Value 1 S Dictation Understandable
8 4 Value 2 I Dictation Understandable
9 5 Value 1 R Web Logic
10 5 Value 2 S Web Logic

如果您想以确切的列顺序为例,请使用 DataFrame.reindex:
dfpiv.reindex(columns=['RecordID', 'Source', 'Test', 'Result', 'Value'])

RecordID Source Test Result Value
0 1 Web Logic Value 1 S
1 1 Web Logic Value 2 I
2 1 Web Logic Value3 Complete
3 2 Person Voice Value 1 >20
4 2 Person Voice Value 2 P
5 3 Mail OCR Value 1 A
6 3 Mail OCR Value 2 I
7 4 Dictation Understandable Value 1 S
8 4 Dictation Understandable Value 2 I
9 5 Web Logic Value 1 R
10 5 Web Logic Value 2 S

详细-逐步:
# mask all rows where "Value" is in column DisplayLabel
mask = df['DisplayLabel'].str.contains('Value')

0 False
1 False
2 True
3 True
4 True
5 False
6 False
7 True
8 True
9 False
10 False
11 True
12 True
13 False
14 False
15 True
16 True
17 False
18 False
19 True
20 True
Name: DisplayLabel, dtype: bool
# select all rows which do NOT have "Value" in DisplayLabel
df[~mask]

RecordID DisplayLabel Value
0 1 Source Web
1 1 Test Logic
5 2 Source Person
6 2 Test Voice
9 3 Source Mail
10 3 Test OCR
13 4 Source Dictation
14 4 Test Understandable
17 5 Source Web
18 5 Test Logic
# pivot the values in DisplayLabel to columns
df2 = df[~mask].pivot(index='RecordID', columns='DisplayLabel', values='Value')

DisplayLabel Source Test
RecordID
1 Web Logic
2 Person Voice
3 Mail OCR
4 Dictation Understandable
5 Web Logic
df[mask].rename(columns={'DisplayLabel':'Result'}) # rename the column DisplayLabel to Result
.set_index('RecordID') # set RecordId as index so we can join df2
.join(df2) # join df2 back to our dataframe based RecordId
.reset_index() # reset index so we get RecordId back as column

RecordID Result Value Source Test
0 1 Value 1 S Web Logic
1 1 Value 2 I Web Logic
2 1 Value3 Complete Web Logic
3 2 Value 1 >20 Person Voice
4 2 Value 2 P Person Voice
5 3 Value 1 A Mail OCR
6 3 Value 2 I Mail OCR
7 4 Value 1 S Dictation Understandable
8 4 Value 2 I Dictation Understandable
9 5 Value 1 R Web Logic
10 5 Value 2 S Web Logic

关于python - 从Pandas数据框中仅解冻列的一部分,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59847074/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com