- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个稍微进入饱和状态的外部校准曲线。所以我拟合了一个二阶多项式和一个测量样本的数据框,我想知道其中的浓度。
df_calibration=structure(list(dilution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),
area = c(1000, 2000, 3000, 4000, 5000, 6000, 7000, 7800,
8200, 8500, 1200, 2200, 3200, 4200, 5200, 6200, 7200, 8000,
8400, 8700), substance = c("A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "b", "b", "b", "b", "b", "b", "b", "b",
"b", "b")), row.names = c(NA, 20L), class = "data.frame")
df_samples=structure(list(area = c(1100, 1800, 2500, 3200, 3900, 1300, 2000,
2700, 3400, 4100), substance = c("A", "A", "A", "A", "A", "b",
"b", "b", "b", "b")), row.names = c(NA, 10L), class = "data.frame")
df_fits=df_calibration %>% group_by(substance) %>%
do(fit = lm(area ~ poly(dilution,2), data = .))%>%
tidy(fit) %>%
select(substance, term, estimate) %>%
spread(term, estimate)
df_fits=df_fits %>% rename(a=`poly(dilution, 2)2`,b=`poly(dilution, 2)1`,c=`(Intercept)`)
#join parameters with sample data
df_samples=left_join(df_samples,df_fits)
#calculate with general solution for polynomial 2nd order
df_samples$dilution_calc=
(df_samples$b*(-1)+sqrt(df_samples$b^2-(4*df_samples$a*(df_samples$c-df_samples$area))))/(2*df_samples$a)
stat_smooth()
的曲线上.附加的虚线与物质“A”的图形中方程的参数(与数据框中的数字匹配)一起放置。所以我的计算应该是正确的(或不正确?)为什么会有差异?我究竟做错了什么?我如何从
stat_smooth()
完成的拟合中获取参数?
my.formula=y ~ poly(x,2)
ggplot(df_calibration, aes(x = dilution, y = area)) +
stat_smooth(method = "lm", se=FALSE, formula = my.formula) +
stat_function(fun=function(x){5250+(7980*x)+(-905*x^2)},
inherit.aes = F,linetype="dotted")+
stat_poly_eq(formula = my.formula,
aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
parse = TRUE) +
geom_point(shape=17)+
geom_point(data=df_samples,
aes(x=dilution_calc,y=area),
shape=1,color="red")+
facet_wrap(~substance,scales = "free")
最佳答案
默认情况下,poly
计算正交多项式。您可以使用 raw=TRUE
关闭正交化。争论。
请注意,该公式有两次出现:一次在拟合回归时使用原始变量名称,然后在 stat_smooth
中使用。使用通用变量名 x
和 y
.但否则它应该是相同的公式,与raw=TRUE
.
library("tidyverse")
# Define/import your data here....
df_fits <- df_calibration %>%
group_by(substance) %>%
do(fit = lm(area ~ poly(dilution, 2, raw = TRUE), data = .)) %>%
broom::tidy(fit) %>%
select(substance, term, estimate) %>%
spread(term, estimate) %>%
# It is simpler to rename the coefficients here
setNames(c("substance", "c", "b", "a"))
# join parameters with sample data
df_samples <- left_join(df_samples, df_fits)
# calculate with general solution for polynomial 2nd order
df_samples <- df_samples %>%
mutate(dilution_calc = (b * (-1) + sqrt(b^2 - (4 * a * (c - area)))) / (2 * a))
my.formula <- y ~ poly(x, 2, raw = TRUE)
df_calibration %>%
ggplot(aes(x = dilution, y = area)) +
stat_smooth(method = "lm", se = FALSE, formula = my.formula) +
geom_point(shape = 17) +
geom_point(
data = df_samples,
aes(x = dilution_calc, y = area),
shape = 1, color = "red"
) +
facet_wrap(~substance, scales = "free")
关于r - 为什么 do(lm...) 和 geom_smooth(method ="lm") 之间有区别?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55437248/
我对 lm 的一些令人不安的行为感兴趣函数和相关的predict.lm R 中的函数。splines基础包提供函数bs生成 b 样条展开,然后可用于使用 lm 拟合样条模型,一个通用的线性模型拟合函数
我使用 minpack.lm 包中的 nls.lm 来拟合许多非线性模型。 由于初始参数估计时的奇异梯度矩阵,它经常在 20 次迭代后失败。 问题是当我在失败之前查看迭代(trace = T)时,我可
我有一个稍微进入饱和状态的外部校准曲线。所以我拟合了一个二阶多项式和一个测量样本的数据框,我想知道其中的浓度。 df_calibration=structure(list(dilution = c(0
我试图弄清楚默认 r plot 的残差与拟合图中使用了哪种平滑线对于 lm对象,所以我通过输入 ?plot.lm 查看了帮助页面,因为据我了解 .是如何定义不同对象类型的这些默认行为的。 正如预期的那
我正在尝试使用 R 创建一个线性模型并使用它来预测一些值。主题是棒球数据。如果我这样做: obp <- lm(offense$R ~ offense$OBP) predict(obp, newdata
我有两个变量,我想找到它们之间的相关性。问题是,根据我使用的方法,我似乎得到了不同的结果。 我知道的一种方法是使用 scale() 函数中的自变量和因变量运行 lm() 函数。 所以下面的变量看起来像
我在使用 C Makefile 时遇到了一些问题。 Makefile 的内容如下: PROJECT = 3D-ELM MPICC = mpicc CLAGS = -g -O3 LIBS = -lm S
我使用 caret R 包作为一个非常方便的建模包装器。虽然这是一个奇怪的用法,但在使用模型类型 =“lm”和“无”的交叉验证时,我在从模型中提取结果时遇到了一些麻烦。参见下面的示例: library
我想使用 lm 在 R 中拟合线性模型获得总模型拟合的系数估计值和 p 值 + p 值(类似方差分析),因此基本上来自 summary.lm 的输出. 问题是我想使用我自己的模型矩阵,而不是在调用 l
我建了一个 lm不使用 data= 的模型范围: m1 <- lm( mdldvlp.trim$y ~ gc.pc$scores[,1] + gc.pc$scores[,2] + gc.pc$sco
我是 R 的新手,我只是在学习 apply功能及其工作方式。我只想从 lm 中提取系数适合几年内产品颜色和品牌的变量 x。 我知道我可以创建一个 for 循环并按型号年份对数据进行子集化并拟合它,但我
如何计算 df 中存储在列中的多个变量的行向 lm()/系数? 我有这种数据(只是例子): set.seed(1) foo trialNumber Nr1 Nr2
我对在 ggplot2 中自动绘制模型很感兴趣。基于 discussion在 ggplot2 问题跟踪器上,我相信像下面这样的包装器应该可以工作。 geom_predict Warning: Com
我正在对多个属性(包括两个分类属性B和F)进行线性回归,但是我没有获得每个系数水平的系数值。 B具有9个级别,而F具有6个级别。当我最初运行模型(带有截距)时,我得到了8个B系数和5个F系数,我将其理
我一直试图弄清楚 subset R 中的参数 lm()功能有效。特别是以下代码对我来说似乎很可疑: data(mtcars) summary(lm(mpg ~ wt, data=mtcars))
我有以下数据框 > df df2 Economy ConditionA ConditionB ConditionC ConditionD 1 FRANCE 9
我正在使用来自包鼠标的男孩数据集的数据。当我对其中一个因子变量 (phb) 运行回归时,输出会显示这些因子,但给它们的名称与数据中的名称不同。我想知道为什么会这样。有没有办法纠正它? library(
通常,我和你(假设你不是机器人)很容易识别预测器是分类的还是定量的。例如,性别显然是分类的。您的最后一票可以分类。 基本上,我们可以轻松识别分类预测变量。但是当我们在 R 中输入一些数据时会发生什么,
我们从中得到了一个 lm 对象并想提取标准错误 lm_aaa<- lm(aaa~x+y+z) 我知道函数摘要、名称和系数。 但是,摘要似乎是手动访问标准错误的唯一方法。 你知道我怎么能输出se吗? 谢
我正在拟合一个模型来分解数据并进行预测。如果newdata中的predict.lm()包含模型未知的单个因子级别,则所有predict.lm()都会失败并返回错误。 有没有一种好方法可以让predic
我是一名优秀的程序员,十分优秀!