- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的脚本的一个关键部分依赖于大量固定长度字符串的串联。所以我想使用低级 numpy.char.join
函数而不是经典的 python 构建 str.join
.
但是,我无法让它正常工作:
import numpy as np
# Example array.
array = np.array([
['a', 'b', 'c'],
['d', 'e', 'f'],
['g', 'h', 'i'],
], dtype='<U1')
# Now I wish to get:
# array(['abc', 'def', 'ghi'], dtype='<U3')
# But none of these is successful :(
np.char.join('', array)
np.char.join('', array.astype('<U3'))
np.char.join(np.array(''), array.astype('<U3'))
np.char.join(np.array('').astype('<U3'), array.astype('<U3'))
np.char.join(np.array(['', '', '']).astype('<U3'), array.astype('<U3'))
np.char.join(np.char.asarray(['', '', '']).astype('<U3'), np.char.asarray(array))
np.char.asarray(['', '', '']).join(array)
np.char.asarray(['', '', '']).astype('<U3').join(array.astype('<U3'))
<U1
大批?
np.char.join
适本地。
import numpy as np
import numpy.random as rd
from string import ascii_lowercase as letters
from time import time
# Build up an array with many random letters
n_lines = int(1e7)
n_columns = 4
array = np.array(list(letters))[rd.randint(0, len(letters), n_lines * n_columns)]
array = array.reshape((n_lines, n_columns))
# One quick-n-dirty way to benchmark.
class MeasureTime(object):
def __enter__(self):
self.tic = time()
def __exit__(self, type, value, traceback):
toc = time()
print(f"{toc-self.tic:0.3f} seconds")
# And test three concatenations procedures.
with MeasureTime():
# Involves str.join
cat = np.apply_along_axis("".join, 1, array)
with MeasureTime():
# Involves str.join
cat = np.array(["".join(row) for row in array])
with MeasureTime():
# Involve low-level np functions instead.
# Here np.char.add for example.
cat = np.char.add(
np.char.add(np.char.add(array[:, 0], array[:, 1]), array[:, 2]), array[:, 3]
)
41.722 seconds
19.921 seconds
15.206 seconds
np.char.join
做得更好?如何使它工作?
最佳答案
在原始 (3,3) 数组上(时间可能会有所不同):
链式 np.char.add
:
In [88]: timeit np.char.add(np.char.add(arr[:,0],arr[:,1]),arr[:,2])
29 µs ± 223 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
object
数据类型。对于 python 字符串,'+' 是一个字符串连接。
In [89]: timeit arr.astype(object).sum(axis=1)
14.1 µs ± 18.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
''.join()
应该比字符串总和更快。此外,它还允许您指定“分隔符”:
In [90]: timeit np.array([''.join(row) for row in arr])
13.8 µs ± 41.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [91]: timeit [''.join(row) for row in arr]
10.2 µs ± 15.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
tolist
将数组转换为字符串列表列表:
In [92]: timeit [''.join(row) for row in arr.tolist()]
1.01 µs ± 1.81 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
np.char.add
:
In [97]: timeit [row[0]+row[1]+row[2] for row in arr.tolist()]
1.19 µs ± 2.68 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
numpy
没有低级字符串代码,至少与它具有低级编译数字代码不同。它仍然依赖于 Python 字符串代码,即使它是从 C-API 调用的。
U1
,我们可以将它们视为
U3
:
In [106]: arr.view('U3')
Out[106]:
array([['abc'],
['def'],
['ghi']], dtype='<U3')
In [107]: arr.view('U3').ravel()
Out[107]: array(['abc', 'def', 'ghi'], dtype='<U3')
In [108]: timeit arr.view('U3').ravel()
1.04 µs ± 9.81 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
np.char.join
我们必须将行收集到某种元组、列表等中。一种方法是创建一个对象 dtype 数组,并从数组中填充它:
In [110]: temp = np.empty(arr.shape[0], object)
In [111]: temp
Out[111]: array([None, None, None], dtype=object)
In [112]: temp[:] = list(arr)
In [113]: temp
Out[113]:
array([array(['a', 'b', 'c'], dtype='<U1'),
array(['d', 'e', 'f'], dtype='<U1'),
array(['g', 'h', 'i'], dtype='<U1')], dtype=object)
In [114]: np.char.join('',temp)
Out[114]: array(['abc', 'def', 'ghi'], dtype='<U3')
In [115]: temp[:] = arr.tolist()
In [116]: temp
Out[116]:
array([list(['a', 'b', 'c']), list(['d', 'e', 'f']),
list(['g', 'h', 'i'])], dtype=object)
In [117]: np.char.join('',temp)
Out[117]: array(['abc', 'def', 'ghi'], dtype='<U3')
In [122]: %%timeit
...: temp = np.empty(arr.shape[0], object)
...: temp[:] = arr.tolist()
...: np.char.join('', temp)
...:
...:
22.1 µs ± 69.1 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
np.char.join
能做的,对比一下
split
:
In [132]: temp
Out[132]:
array([list(['a', 'b', 'c']), list(['d', 'e', 'f']),
list(['g', 'h', 'i'])], dtype=object)
In [133]: b = np.char.join(',',temp)
In [134]: b
Out[134]: array(['a,b,c', 'd,e,f', 'g,h,i'], dtype='<U5')
In [135]: np.char.split(b,',')
Out[135]:
array([list(['a', 'b', 'c']), list(['d', 'e', 'f']),
list(['g', 'h', 'i'])], dtype=object)
''.join
到对象数组的元素:
In [136]: np.frompyfunc(lambda s: ','.join(s), 1,1)(temp)
Out[136]: array(['a,b,c', 'd,e,f', 'g,h,i'], dtype=object)
关于python - 如何使用 numpy.char.join?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60954358/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!