gpt4 book ai didi

python - tensorflow 加载数据 : bad marshal data

转载 作者:行者123 更新时间:2023-12-04 14:12:11 36 4
gpt4 key购买 nike

我想在 Keras 中加载 FaceNet,但出现错误。
模态 facenet_keras.h5 已准备就绪,但我无法加载它。
您可以从此链接获取 facenet_keras.h5:
https://drive.google.com/drive/folders/1pwQ3H4aJ8a6yyJHZkTwtjcL4wYWQb7bn
我的 tensorflow 版本是:

tensorflow.__version__
'2.2.0'
当我想加载数据时:
from tensorflow.keras.models import load_model
load_model('facenet_keras.h5')
得到这个错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-2a20f38e8217> in <module>
----> 1 load_model('facenet_keras.h5')

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/save.py in load_model(filepath, custom_objects, compile)
182 if (h5py is not None and (
183 isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 184 return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
185
186 if sys.version_info >= (3, 4) and isinstance(filepath, pathlib.Path):

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
175 raise ValueError('No model found in config file.')
176 model_config = json.loads(model_config.decode('utf-8'))
--> 177 model = model_config_lib.model_from_config(model_config,
178 custom_objects=custom_objects)
179

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/model_config.py in model_from_config(config, custom_objects)
53 '`Sequential.from_config(config)`?')
54 from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top
---> 55 return deserialize(config, custom_objects=custom_objects)
56
57

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
103 config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
104
--> 105 return deserialize_keras_object(
106 config,
107 module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
367
368 if 'custom_objects' in arg_spec.args:
--> 369 return cls.from_config(
370 cls_config,
371 custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in from_config(cls, config, custom_objects)
984 ValueError: In case of improperly formatted config dict.
985 """
--> 986 input_tensors, output_tensors, created_layers = reconstruct_from_config(
987 config, custom_objects)
988 model = cls(inputs=input_tensors, outputs=output_tensors,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in reconstruct_from_config(config, custom_objects, created_layers)
2017 # First, we create all layers and enqueue nodes to be processed
2018 for layer_data in config['layers']:
-> 2019 process_layer(layer_data)
2020 # Then we process nodes in order of layer depth.
2021 # Nodes that cannot yet be processed (if the inbound node

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in process_layer(layer_data)
1999 from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
2000
-> 2001 layer = deserialize_layer(layer_data, custom_objects=custom_objects)
2002 created_layers[layer_name] = layer
2003

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
103 config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
104
--> 105 return deserialize_keras_object(
106 config,
107 module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
367
368 if 'custom_objects' in arg_spec.args:
--> 369 return cls.from_config(
370 cls_config,
371 custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in from_config(cls, config, custom_objects)
988 def from_config(cls, config, custom_objects=None):
989 config = config.copy()
--> 990 function = cls._parse_function_from_config(
991 config, custom_objects, 'function', 'module', 'function_type')
992

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in _parse_function_from_config(cls, config, custom_objects, func_attr_name, module_attr_name, func_type_attr_name)
1040 elif function_type == 'lambda':
1041 # Unsafe deserialization from bytecode
-> 1042 function = generic_utils.func_load(
1043 config[func_attr_name], globs=globs)
1044 elif function_type == 'raw':

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in func_load(code, defaults, closure, globs)
469 except (UnicodeEncodeError, binascii.Error):
470 raw_code = code.encode('raw_unicode_escape')
--> 471 code = marshal.loads(raw_code)
472 if globs is None:
473 globs = globals()

ValueError: bad marshal data (unknown type code)
谢谢你。

最佳答案

此错误的可能解决方案如下所示:

  • Model可能已在 Python 2.x 中构建和保存你可能正在使用 Python 3.x .解决方案是使用相同的 Python Version使用哪个 ModelBuiltSaved .
  • 使用相同版本的 Keras (并且,可能是 tensorflow ),您的模型在其上是 BuiltSaved .
  • Saved Model可能包含自定义对象。如果是这样,您需要使用代码加载模型,new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
  • 如果您可以重新创建 architecture (即您拥有用于生成它的原始代码),您可以实例化 model从该代码然后使用 model.load_weights('your_model_file.hdf5')加载重量。如果您没有用于创建原始 architecture 的代码,则这不是一个选项。 .

  • 更多详情请引用此 Github Issue .更多详情 Saving and Loading the ModelCustom Objects ,请引用这个 Tensorflow Documentation而这个 Stack Overflow Answer .

    关于python - tensorflow 加载数据 : bad marshal data,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63484172/

    36 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com