- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我知道如何使用附加输入在 Keras 中编写自定义损失函数,而不是标准 y_true
, y_pred
对,见下文。我的问题是输入带有可训练变量(其中一些)的损失函数,该变量是损失梯度的一部分,因此应该更新。
我的解决方法是:
N
X V
大小在哪里N
是观察次数和 V
附加变量的数量 Dense()
层 dummy_output
以便 Keras 跟踪我的 V
“权重”V
我的真实输出层的自定义损失函数中的权重 dummy_output
使用虚拟损失函数(仅返回 0.0 和/或权重 0.0)层所以我的V
“权重”仅通过我的自定义损失函数更新 import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense
from tensorflow.keras.callbacks import EarlyStopping
import tensorflow.keras.backend as K
from tensorflow.keras.layers import Input
from tensorflow.keras import Model
n_col = 10
n_row = 1000
X = np.random.normal(size=(n_row, n_col))
beta = np.arange(10)
y = X @ beta
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# my custom loss function accepting my dummy layer with 2 variables
def custom_loss_builder(dummy_layer):
def custom_loss(y_true, y_pred):
var1 = dummy_layer.trainable_weights[0][0]
var2 = dummy_layer.trainable_weights[0][1]
return var1 * K.mean(K.square(y_true-y_pred)) + var2 ** 2 # so var2 should get to zero, var1 should get to minus infinity?
return custom_loss
# my dummy loss function
def dummy_loss(y_true, y_pred):
return 0.0
# my dummy input, N X V, where V is 2 for 2 vars
dummy_x_train = np.random.normal(size=(X_train.shape[0], 2))
# model
inputs = Input(shape=(X_train.shape[1],))
dummy_input = Input(shape=(dummy_x_train.shape[1],))
hidden1 = Dense(10)(inputs) # here only 1 hidden layer in the "real" network, assume whatever network is built here
output = Dense(1)(hidden1)
dummy_output = Dense(1, use_bias=False)(dummy_input)
model = Model(inputs=[inputs, dummy_input], outputs=[output, dummy_output])
# compilation, notice zero loss for the dummy_output layer
model.compile(
loss=[custom_loss_builder(model.layers[-1]), dummy_loss],
loss_weights=[1.0, 0.0], optimizer= 'adam')
# run, notice y_train repeating for dummy_output layer, it will not be used, could have created dummy_y_train as well
history = model.fit([X_train, dummy_x_train], [y_train, y_train],
batch_size=32, epochs=100, validation_split=0.1, verbose=0,
callbacks=[EarlyStopping(monitor='val_loss', patience=5)])
无论
var1
的起始值如何,似乎都可以正常工作和
var2
(
dummy_output
层的初始化)他们渴望减去
inf
和
0
分别:
var1_list = []
var2_list = []
for i in range(100):
if i % 10 == 0:
print('step %d' % i)
model.fit([X_train, dummy_x_train], [y_train, y_train],
batch_size=32, epochs=1, validation_split=0.1, verbose=0)
var1, var2 = model.layers[-1].get_weights()[0]
var1_list.append(var1.item())
var2_list.append(var2.item())
plt.plot(var1_list, label='var1')
plt.plot(var2_list, 'r', label='var2')
plt.legend()
plt.show()
最佳答案
在这里回答我自己的问题,经过几天的努力,我让它在没有虚拟输入的情况下工作,我认为这更好,应该是“规范”的方式,直到 Keras/TF 简化流程。 Keras/TF 文档就是这样做的 here .
使用带有外部可训练变量的损失函数的关键是使用自定义损失/输出 图层 其中有 self.add_loss(...)
在其 call()
实现,像这样:
class MyLoss(Layer):
def __init__(self, var1, var2):
super(MyLoss, self).__init__()
self.var1 = K.variable(var1) # or tf.Variable(var1) etc.
self.var2 = K.variable(var2)
def get_vars(self):
return self.var1, self.var2
def custom_loss(self, y_true, y_pred):
return self.var1 * K.mean(K.square(y_true-y_pred)) + self.var2 ** 2
def call(self, y_true, y_pred):
self.add_loss(self.custom_loss(y_true, y_pred))
return y_pred
现在注意
MyLoss
层需要
两个输入,实际
y_true
和预测
y
直到那时:
inputs = Input(shape=(X_train.shape[1],))
y_input = Input(shape=(1,))
hidden1 = Dense(10)(inputs)
output = Dense(1)(hidden1)
my_loss = MyLoss(0.5, 0.5)(y_input, output) # here can also initialize those var1, var2
model = Model(inputs=[inputs, y_input], outputs=my_loss)
model.compile(optimizer= 'adam')
最后,正如 TF 文档所提到的,在这种情况下,您不必指定
loss
或
y
在
fit()
功能:
history = model.fit([X_train, y_train], None,
batch_size=32, epochs=100, validation_split=0.1, verbose=0,
callbacks=[EarlyStopping(monitor='val_loss', patience=5)])
再次注意
y_train
进入
fit()
作为输入之一。
var1_list = []
var2_list = []
for i in range(100):
if i % 10 == 0:
print('step %d' % i)
model.fit([X_train, y_train], None,
batch_size=32, epochs=1, validation_split=0.1, verbose=0)
var1, var2 = model.layers[-1].get_vars()
var1_list.append(var1.numpy())
var2_list.append(var2.numpy())
plt.plot(var1_list, label='var1')
plt.plot(var2_list, 'r', label='var2')
plt.legend()
plt.show()
var1
、
var2
的这种特定模式高度依赖于它们的初始值,如果
var1
的初始值高于 1 它实际上不会减少直到减去
inf
)
关于python - 在 Keras/Tensorflow 自定义损失函数中使用额外的 *trainable* 变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64223840/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!