gpt4 book ai didi

r - 如何在 R 中使用 Dataframe 创建所需的矩阵

转载 作者:行者123 更新时间:2023-12-04 14:08:51 25 4
gpt4 key购买 nike

我有一个数据框,它看起来像:

DF_1>

T_id  D1             D2                   Num     type    type_2     fig
xt-1 2017-05-01 2017-03-25 12:11:45 10 A X 25.20
xt-2 2017-05-01 2017-03-25 21:05:25 20 A Y 20.15
xt-3 2017-05-01 2017-03-25 08:10:55 25 B X 15.11
xt-4 2017-05-03 2017-03-25 07:19:35 30 B Y 22.56
xt-5 2017-05-03 2017-03-25 13:12:56 45 C Z 35.45
xt-6 2017-05-03 2017-03-25 18:14:44 20 D Z 27.21
xt-7 2017-04-06 2017-03-25 19:21:35 15 A Z 23.20
xt-8 2017-04-06 2017-03-25 21:11:15 40 C X 21.40
xt-9 2017-04-08 2017-02-25 22:25:04 20 A A 27.50
xt-10 2017-04-06 2017-02-25 16:04:08 30 A Y 32.20
xt-11 2017-04-05 2017-02-25 18:15:25 20 C Z 30.20
xt-12 2017-04-01 2017-01-25 19:22:25 50 A Z 33.15
xt-13 2017-04-02 2017-01-25 23:19:05 15 A A 30.12
xt-14 2017-03-03 2017-01-25 14:25:09 15 D Y 31.25
xt-15 2017-03-10 2017-01-25 23:25:36 40 A X 25.45

从上面的数据帧我想要下面提到的两个矩阵:
1. Date (Last Three Date from `sys.date()`)

D1 count sum mean_num total_sum count_A sum_A count_other sum_other mean_fig mean_TAT

2017-05-03 3 95 31.66 6 0 0 3 95 28.40
2017-05-02 0 0 0 3 0 0 0 0 0.00
2017-05-01 3 55 18.33 3 2 30 1 25 20.15
  • 用于计算 mean_TAT :减去D2 - D1而不是拿
    当天的平均值基于 count同一日期的值。
  • total_sum将从该月的第一个日期开始累积。
  • count_Asum_A基于 typeA对于特定的一天。
  • count_othersum_other对于那些type不是 A .

  • 2.基于月份(根据数据帧的最后三个月)

    enter image description here
    对于基于月份的格式将是相同的,只是计算将以月份为基础。
  • 每个月还有 5 行和 2 列,其中前三行是前 3 行 type_2基于特定月份的计数。
  • increase_%将在上个月计算(即,如果 5 月 17 日的 count 是 50 比 4 月 17 日的 100,则其他 5 行基于上个月 countsum 的值为 -50% 和相同。
  • 第四 A对于 type_2 的值,每个月都是常数是“A”。
  • 第五个Other将是除了那些 4 type_2正如刚才提到的。
  • Total将按照 count 的列和 sum会有加法和为 mean会有意思。

  • 似乎我无法正确解释,希望数据框可以理解矩阵。

    期待一些帮助。

    最佳答案

    这已经是第一部分:

    library(lubridate)
    library(dplyr)

    df2 <- df1 %>%
    mutate(ym = year(D1)*100+month(D1)) %>%
    arrange(D1) %>%
    group_by(D1,ym) %>%
    summarize(count = n(),
    sum=sum(Num),
    mean_num=mean(Num),
    count_A=sum(type=='A'),
    sum_A=sum(Num * (type=='A')),
    count_other=sum(type!='A'),
    sum_other=sum(Num * (type!='A')),
    mean_fig = mean(fig),
    mean_TAT = mean(D2-D1)) %>%
    group_by(ym) %>%
    mutate(total_sum=cumsum(count)) %>%
    ungroup %>%
    arrange(desc(D1)) %>%
    select(D1,count,sum,mean_num,total_sum,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT)


    # # A tibble: 9 x 11
    # D1 count sum mean_num total_sum count_A sum_A count_other sum_other mean_fig mean_TAT
    # <date> <int> <int> <dbl> <int> <int> <int> <int> <int> <dbl> <time>
    # 1 2017-05-03 3 95 31.66667 6 0 0 3 95 28.40667 -39.00000 days
    # 2 2017-05-01 3 55 18.33333 3 2 30 1 25 20.15333 -37.00000 days
    # 3 2017-04-08 1 20 20.00000 7 1 20 0 0 27.50000 -42.00000 days
    # 4 2017-04-06 3 85 28.33333 6 2 45 1 40 25.60000 -21.33333 days
    # 5 2017-04-05 1 20 20.00000 3 0 0 1 20 30.20000 -39.00000 days
    # 6 2017-04-02 1 15 15.00000 2 1 15 0 0 30.12000 -67.00000 days
    # 7 2017-04-01 1 50 50.00000 1 1 50 0 0 33.15000 -66.00000 days
    # 8 2017-03-10 1 40 40.00000 2 1 40 0 0 25.45000 -44.00000 days
    # 9 2017-03-03 1 15 15.00000 1 0 0 1 15 31.25000 -37.00000 days

    数据
    df1 <- read.table(text="T_id  D1             D2                   Num     type    type_2     fig
    xt-1 2017-05-01 '2017-03-25 12:11:45' 10 A X 25.20
    xt-2 2017-05-01 '2017-03-25 21:05:25' 20 A Y 20.15
    xt-3 2017-05-01 '2017-03-25 08:10:55' 25 B X 15.11
    xt-4 2017-05-03 '2017-03-25 07:19:35' 30 B Y 22.56
    xt-5 2017-05-03 '2017-03-25 13:12:56' 45 C Z 35.45
    xt-6 2017-05-03 '2017-03-25 18:14:44' 20 D Z 27.21
    xt-7 2017-04-06 '2017-03-25 19:21:35' 15 A Z 23.20
    xt-8 2017-04-06 '2017-03-25 21:11:15' 40 C W 21.40
    xt-9 2017-04-08 '2017-02-25 22:25:04' 20 A Q 27.50
    xt-10 2017-04-06 '2017-02-25 16:04:08' 30 A W 32.20
    xt-11 2017-04-05 '2017-02-25 18:15:25' 20 C V 30.20
    xt-12 2017-04-01 '2017-01-25 19:22:25' 50 A Z 33.15
    xt-13 2017-04-02 '2017-01-25 23:19:05' 15 A Z 30.12
    xt-14 2017-03-03 '2017-01-25 14:25:09' 15 D Y 31.25
    xt-15 2017-03-10 '2017-01-25 23:25:36' 40 A X 25.45",h=T,strin=F)

    df1$D1 <- as.Date(df1$D1,"%Y-%m-%d")
    df1$D2 <- as.Date(df1$D2,"%Y-%m-%d")

    expected_output <- read.table(text="D1 count sum mean_num total_sum count_A sum_A count_other sum_other mean_fig
    2017-05-03 3 95 31.66 6 0 0 3 95 28.40
    2017-05-02 0 0 0 3 0 0 0 0 0.00
    2017-05-01 3 55 18.33 3 2 30 1 25 20.15")

    第 2 部分的一些提示:

    如果没有您重新解决问题,我无法创造奇迹(在这里提供准确的可重复输出是不必要的)。但这是一种接近的方法,希望:
    df_month <- df1 %>%
    mutate(ym = year(D1)*100+month(D1)) %>%
    arrange(D1) %>%
    group_by(ym) %>%
    summarize(count = n(),
    sum=sum(Num),
    mean_num=mean(Num),
    count_A=sum(type=='A'),
    sum_A=sum(Num * (type=='A')),
    count_other=sum(type!='A'),
    sum_other=sum(Num * (type!='A')),
    mean_fig = mean(fig),
    mean_TAT = mean(D2-D1)) %>%
    mutate(type_2=paste0(month.abb[ym%% 100],"-",ym %/% 100 -2000)) %>%
    select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT)


    df_top3 <- df1 %>%
    filter(type_2 !="A") %>%
    mutate(ym = year(D1)*100+month(D1)) %>%
    arrange(desc(ym)) %>%
    group_by(ym,type_2) %>%
    summarize(count = n(),
    sum=sum(Num),
    mean_num=mean(Num),
    count_A=sum(type=='A'),
    sum_A=sum(Num * (type=='A')),
    count_other=sum(type!='A'),
    sum_other=sum(Num * (type!='A')),
    mean_fig = mean(fig),
    mean_TAT = mean(D2-D1)) %>%
    group_by(ym) %>%
    arrange(desc(count)) %>%
    slice(1:3) %>%
    ungroup %>%
    select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT)


    df_A <- df1 %>%
    filter(type_2 == "A") %>%
    mutate(ym = year(D1)*100+month(D1)) %>%
    arrange(desc(ym)) %>%
    group_by(ym,type_2) %>%
    summarize(count = n(),
    sum=sum(Num),
    mean_num=mean(Num),
    count_A=sum(type=='A'),
    sum_A=sum(Num * (type=='A')),
    count_other=sum(type!='A'),
    sum_other=sum(Num * (type!='A')),
    mean_fig = mean(fig),
    mean_TAT = mean(D2-D1)) %>%
    select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT)



    df_other <- df1 %>%
    mutate(ym = year(D1)*100+month(D1)) %>%
    anti_join(bind_rows(df_top3,df_A),by = c("ym","type_2")) %>%
    mutate(type_2="Other") %>%
    arrange(desc(ym)) %>%
    group_by(ym,type_2) %>%
    summarize(count = n(),
    sum=sum(Num),
    mean_num=mean(Num),
    count_A=sum(type=='A'),
    sum_A=sum(Num * (type=='A')),
    count_other=sum(type!='A'),
    sum_other=sum(Num * (type!='A')),
    mean_fig = mean(fig),
    mean_TAT = mean(D2-D1)) %>%
    select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT)
    # it's empty with your example data


    bind_rows(df_month,df_top3,df_A,df_other) %>%
    arrange(ym) %>%
    select(-ym) %>%
    rename(Month = type_2)

    关于r - 如何在 R 中使用 Dataframe 创建所需的矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49098331/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com