- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试推断最初在 PyTorch 中构建的 TFLite 模型。我一直在遵循 PyTorch implementation 的路线,并且必须沿着 RGB channel 预处理图像。我发现与 transforms.Normalize()
最接近的 TensorFlow 等价物是 tf.image.per_image_standardization()
( documentation )。尽管这是一个非常好的匹配,但 tf.image.per_image_standardization()
通过跨 channel 获取 mean 和 std 并将其应用于它们来做到这一点。这是 here 的完整实现
def per_image_standardization(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The standardized image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
num_pixels = math_ops.reduce_prod(array_ops.shape(image))
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
variance = gen_nn_ops.relu(variance)
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.subtract(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
而 PyTorch 的
transforms.Normalize()
允许我们提及要应用于每个 channel 的均值和标准差,如下所示。
# transformation
pose_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
在 TensorFlow 2.x 中获得此功能的方法是什么?
def normalize_image(image, mean, std):
for channel in range(3):
image[:,:,channel] = (image[:,:,channel] - mean[channel])/std[channel]
return image
我不确定这有多有效,但似乎完成了工作。在输入模型之前,我仍然必须将输出转换为张量。
最佳答案
您提到的解决方法似乎没问题。但是,当您在数据管道(for...loop
或 generator
)中处理大型数据集时,使用 tf.data
将 每个 RGB channel 的归一化计算为 单个图像 可能有点问题。但无论如何都可以。这是您的方法的演示,稍后我们将提供两种可能适合您的替代方法。
from PIL import Image
from matplotlib.pyplot import imshow, subplot, title, hist
# load image (RGB)
img = Image.open('/content/9.jpg')
def normalize_image(image, mean, std):
for channel in range(3):
image[:,:,channel] = (image[:,:,channel] - mean[channel]) / std[channel]
return image
OP_approach = normalize_image(np.array(img) / 255.0,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
现在,让我们之后观察变换属性。
plt.figure(figsize=(25,10))
subplot(121); imshow(OP_approach); title(f'Normalized Image \n min-px: \
{OP_approach.min()} \n max-pix: {OP_approach.max()}')
subplot(122); hist(OP_approach.ravel(), bins=50, density=True); \
title('Histogram - pixel distribution')
-2.1179039301310043
,
2.6399999999999997
)。
mean
和
variance
(
std
的平方)。
from tensorflow.keras.experimental.preprocessing import Normalization
input_data = np.array(img)/255
layer = Normalization(mean=[0.485, 0.456, 0.406],
variance=[np.square(0.299),
np.square(0.224),
np.square(0.225)])
plt.figure(figsize=(25,10))
subplot(121); imshow(layer(input_data).numpy()); title(f'Normalized Image \n min-px: \
{layer(input_data).numpy().min()} \n max-pix: {layer(input_data).numpy().max()}')
subplot(122); hist(layer(input_data).numpy().ravel(), bins=50, density=True);\
title('Histogram - pixel distribution')
-2.0357144
,
2.64
)。
mean
并除以平均
std
。
norm_img = ((tf.cast(np.array(img), tf.float32) / 255.0) - 0.449) / 0.226
plt.figure(figsize=(25,10))
subplot(121); imshow(norm_img.numpy()); title(f'Normalized Image \n min-px: \
{norm_img.numpy().min()} \n max-pix: {norm_img.numpy().max()}')
subplot(122); hist(norm_img.numpy().ravel(), bins=50, density=True); \
title('Histogram - pixel distribution')
-1.9867257
,
2.4380531
)。最后,如果我们与
pytorch
方式进行比较,这些方法之间没有太大区别。
import torchvision.transforms as transforms
transform_norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
norm_pt = transform_norm(img)
plt.figure(figsize=(25,10))
subplot(121); imshow(np.array(norm_pt).transpose(1, 2, 0));\
title(f'Normalized Image \n min-px: \
{np.array(norm_pt).min()} \n max-pix: {np.array(norm_pt).max()}')
subplot(122); hist(np.array(norm_pt).ravel(), bins=50, density=True); \
title('Histogram - pixel distribution')
-2.117904
,
2.64
)。
关于python - TensorFlow 相当于 PyTorch 的 transforms.Normalize(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67480507/
我有一段这样的代码。我发现 myResults = writer.getBuffer().toString(); 对某些用例返回 EMPTY STRING,但对其他用例则不返回。 我查看了服务器,但在
如何使用 javascript 通过 id 更改元素中的 -webkit-transform 、-moz-transform 、-o-transform 和 -ms-transform css? 这段
我正在使用 javax.xml.transform.Transformer.transform() 通过 xsl 样式表将一个 xml 转换为另一个 xml。我想以编程方式设置第一级 child 的排
为了使 seaborn.pairplot() 正常工作,在 jupyter notebook 中执行了以下步骤。 /usr/local/lib/python2.7/site-packages/matp
假设这个输入 XML 编写这些代码行: StreamSource source = new StreamSource(new StringReader(/* the above XML*/));
如何在 spring 框架中配置 java.xml.transform.Transformer ?我需要转换器的实例来通过 xslt 将 xml 转换为文本。因此,配置的转换器应该了解 xslt 样式
我一直在核心数据中使用可转换属性,将图像和颜色等复杂对象转换为原始数据。我拿了this ... The idea behind transformable attributes is that you
我正在尝试打开 XML 文件,添加一些更改,然后保存到其他 XML 文件结果。我正在使用标准 javax.xml.parsers.* 和 javax.xml.transform* 类。 但在保存的文档
Transformer(变换方法)对输入源的大小有限制吗? 我正在尝试转换一个相当长的 (18M) XML,但收到一个奇怪的错误 "The element type "HR" must be term
我正在尝试解析一个非常简单的示例: 100 我使用的样式表如下: 这在 libxs
来自文档 for from_pretrained ,我知道我不必每次都下载预训练的向量,我可以使用以下语法保存它们并从磁盘加载: - a path to a `directory` contain
默认缓存目录磁盘容量不足,我需要更改默认缓存目录的配置。 最佳答案 您可以在每次加载模型时指定缓存目录 .from_pretrained通过设置参数cache_dir .您可以通过导出环境变量 TRA
有一个函数,例如: CATransform3DGetAffineTransform Returns the affine transform represented by 't'. If 't' ca
我有一个包含 WCF 设置的配置文件: “add”元素只有一个 baseAddress 属性,所以我不能使用 Match 定位器。一种方法如何像我的示例中那样转换多个元素? 最
在收到下面链接中描述的错误后,我已将实体属性的 Transfomer 设置为 NSSecureUnarchiveFromData(之前为 nil)。 CoreData crash error Xcod
当我写Document时使用 Transformer 的 transform() 方法转换为 XML,生成的 XML 文档的格式很好 - 所有元素都写在单独的行上并缩进。除了第一个元素与定义写在同一行
我不明白 StreamResult 实例会发生什么。我看到 Transformer 对象接收 source 和 streamResult: transformer.transform(sour
从下面的代码片段我应该得出结论,std::transform 比 boost::transform 更受欢迎,因为前者使用更少的初始化和析构函数可能更有效比后者? #include #include
transform() 可以将函数应用到序列的元素上,并将这个函数返回的值保存到另一个序列中,它返回的迭代器指向输出序列所保存的最后一个元素的下一个位置。 这个算法有一个版本和 for_each()
我是 react-native 的新手。在项目上将 react-native 从 0.48.3 升级到 0.62.2 后,运行“react-native run-ios”命令时出现错误:“index.
我是一名优秀的程序员,十分优秀!