gpt4 book ai didi

python - 如何在简单函数 : (Finding Triangles in network) 上使用 Cythonize/allow numba.jit

转载 作者:行者123 更新时间:2023-12-04 14:06:35 26 4
gpt4 key购买 nike

背景故事:

我一直在寻找一种高性能的方法来查找网络中低于给定维度的派系(例如,所有 k<=3 的 k-派系都是节点、边和三角形)。由于这个低维团(k<=3 或 k<=4)的例子经常出现,我只好求助于寻找高性能的三角形查找方法。

Networkx 非常慢;然而,networkit 有一个性能更高的解决方案,带有 Cython 后端。

不幸的是,networkit 没有用于列出所有 <= 给定维度的派系的算法。他们有一个 MaximalCliques 算法,这是不同的,不幸的是,它只是以没有特定顺序(据我所知)运行 所有可能的 cliques 维度。它也只计算 个三角形,但不列出构成每个三角形的节点。因此,我现在正在编写自己的函数来实现一种相当有效的方法。

问题:

我有下面的函数 nk_triangles;但是,它很难轻易干扰到 numba 或 Cython。因此,我想看看是否有人在这些领域拥有更多专业知识,可以将其推向更快的速度。

我制作了一段简单但完全可行的代码片段,其中包含感兴趣的功能:

import networkit as nk
import numba
from itertools import combinations
from urllib.request import urlopen
import tempfile

graph_url="https://raw.githubusercontent.com/networkit/networkit/master/input/tiny_02.graph"
big_graph_url="https://raw.githubusercontent.com/networkit/networkit/master/input/caidaRouterLevel.graph"
with tempfile.NamedTemporaryFile() as f:
with urlopen(graph_url) as r:
f.write(r.read())
f.read()
G = nk.readGraph(f.name, nk.Format.METIS)

#@numba.jit
def nk_triangles(g):
# Source:
# https://cs.stanford.edu/~rishig/courses/ref/l1.pdf
triangles = set()
for node in g.iterNodes():
ndeg = g.degree(node)

neighbors = [neigh for neigh in g.iterNeighbors(node)
if (ndeg < g.degree(neigh)) or
((ndeg == g.degree(neigh))
and node < neigh)]

node_triangles = set({(node, *c): max(g.weight(u,v)
for u,v in combinations([node,*c], 2))
for c in combinations(neighbors, 2)
if g.hasEdge(*c)})
triangles = triangles.union(node_triangles)
return triangles


tris = nk_triangles(G)
tris

可以切换 big_graph_url 以查看该算法是否实际上执行得相当好。 (我的图表仍然比这大几个数量级)

就目前而言,这需要大约 40 分钟来计算我的机器(单线程 python 循环调用 networkit 和 itertools 中的 C 后端代码)。大网络中三角形的数量为455,062。

最佳答案

这是您的代码的 numpy 版本,您的大图大约需要 1 分钟。

graph_url = "https://raw.githubusercontent.com/networkit/networkit/master/input/tiny_02.graph"
big_graph_url = "https://raw.githubusercontent.com/networkit/networkit/master/input/caidaRouterLevel.graph"

with tempfile.NamedTemporaryFile() as f:
with urlopen(big_graph_url) as r:
f.write(r.read())
f.read()
G = nk.readGraph(f.name, nk.Format.METIS)

nodes = np.array(tuple(G.iterNodes()))
adjacency_matrix = nk.algebraic.adjacencyMatrix(G, matrixType='sparse').astype('bool')
degrees = np.sum(adjacency_matrix, axis=0)
degrees = np.array(degrees).reshape(-1)



def get_triangles(node, neighbors):
buffer = neighbors[np.argwhere(triangle_condition(*np.meshgrid(neighbors, neighbors)))]
triangles = np.empty((buffer.shape[0], buffer.shape[1]+1), dtype='int')
triangles[:,0] = node
triangles[:,1:] = buffer
return triangles

def triangle_condition(v,w):
upper = np.tri(*v.shape,-1,dtype='bool').T
upper[np.where(upper)] = adjacency_matrix[v[upper],w[upper]]
return upper

def nk_triangles():
triangles = list()
for node in nodes:
ndeg = degrees[node]
neighbors = nodes[adjacency_matrix[node].toarray().reshape(-1)]
neighbor_degs = degrees[neighbors]
neighbors = neighbors[(ndeg < neighbor_degs) | ((ndeg == neighbor_degs) & (node < neighbors))]
if len(neighbors) >= 2:
triangles.append(get_triangles(node, neighbors))
return triangles

tris = np.concatenate(nk_triangles())
print('triangles:', len(tris))

给我

triangles: 455062
CPU times: user 50.6 s, sys: 375 ms, total: 51 s
Wall time: 52 s

关于python - 如何在简单函数 : (Finding Triangles in network) 上使用 Cythonize/allow numba.jit,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68240708/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com