作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试实现一个 GlobalMaxPooling2D 层。我有一个 10x10x128 输入,并希望将其缩减为形状为 1x1x128 的 3D 张量。我尝试使用 keepdims=True,但它抛出一个
TypeError: ('Keyword argument not understood:', 'keepdims')
我也尝试过添加 data_format 但无济于事(这是默认的“channel_last”)。这是 GlobalMaxPooling2D 的代码
ug = layers.GlobalMaxPooling2D(data_format='channel_last',keepdims=True)(inputs)
输入变量是二维转换操作的输出:
conv4 = layers.Conv2D(filters=128, kernel_size=3, strides=1, padding='valid', activation='relu', name='conv4')(conv3)
我是因为这个 Conv 层还是在调用 GlobalMaxPooling2D 层时弄乱了某个地方?有没有办法从 GlobalMaxPooling2D 层获得 1x1x128 的输出?
最佳答案
对于 tf < 2.6
, 你可以这样做
import tensorflow as tf; print(tf.__version__)
input_shape = (1, 10, 10, 128)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalMaxPool2D()(x)
z = tf.keras.layers.Reshape((1, 1, input_shape[-1]))(y)
print(x.shape)
print(y.shape)
print(z.shape)
2.5.0
(1, 10, 10, 128)
(1, 128)
(1, 1, 1, 128)
来自tf > = 2.6
, 你可以使用 keepdims
参数。
!pip install tensorflow==2.6.0rc0 -q
import tensorflow as tf; print(tf.__version__)
input_shape = (1, 10, 10, 128)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalMaxPool2D(keepdims=True)(x)
print(x.shape)
print(y.shape)
2.6.0-rc0
(1, 10, 10, 128)
(1, 1, 1, 128)
关于tensorflow - 凯拉斯 GlobalMaxPooling2D 类型错误 : ('Keyword argument not understood:' , 'keepdims' ),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68287879/
我是一名优秀的程序员,十分优秀!