gpt4 book ai didi

python - 在 Holoviews/Datashader 中更改分类数据的颜色图

转载 作者:行者123 更新时间:2023-12-04 13:59:25 29 4
gpt4 key购买 nike

我正在尝试使用 Datashader 和 Holoviews 来可视化分类空间数据,类似于 https://anaconda.org/jbednar/census-hv-dask/notebook .但是,当我尝试为类别分配不同的颜色时,我总是得到相同的(大概是默认的)颜色( An example of the output image 。)

这是我在 Jupyter notebook 中运行的代码。谁能告诉我如何使自定义颜色映射工作?或者至少运行代码看看你最终的颜色是否与图例匹配。谢谢!

from sklearn.datasets.samples_generator import make_blobs
from matplotlib import pyplot
import pandas as pd

import holoviews as hv
import geoviews as gv
import datashader as ds
from cartopy import crs
from matplotlib.cm import get_cmap
from holoviews.operation.datashader import datashade, aggregate
hv.notebook_extension('bokeh', width=95)

# Generating blob data:
X, y = make_blobs(n_samples=5000000, centers=5, n_features=2)
df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))

# Plotting the blobs using datashader and holoviews:
%opts Overlay [width=800 height=455 xaxis=None yaxis=None show_grid=False]
%opts Shape (fill_color=None line_width=1.5) [apply_ranges=False]
%opts Points [apply_ranges=False] WMTS (alpha=0.5) NdOverlay [tools=['tap']]

color_key = {0:'red', 1:'blue', 2:'green', 3:'yellow', 4:'black'}
labels = {0:'red', 1:'blue', 2:'green', 3:'yellow', 4:'black'}

color_points = hv.NdOverlay({labels[k]: gv.Points([0,0], crs=crs.PlateCarree(),
label=labels[k])(style=dict(color=v))
for k, v in color_key.items()})

dataset = gv.Dataset(df, kdims=['x', 'y'], vdims=['label'])
shaded = datashade(hv.Points(dataset), cmap=color_key, aggregator=ds.count_cat('label'))

shaded * color_points

最佳答案

该代码似乎不可运行(种族未定义,gv 未导入),但无论如何,分类颜色由 color_key 决定。参数,而不是 cmap ,所以你需要改变 cmap=color_keycolor_key=color_key .

关于python - 在 Holoviews/Datashader 中更改分类数据的颜色图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54026510/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com