gpt4 book ai didi

r - 带有 R Part II 的重量数据

转载 作者:行者123 更新时间:2023-12-04 13:54:17 42 4
gpt4 key购买 nike

给定的是以下数据框:

structure(list(UH6401 = c(1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 
1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,
0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
1, 0, 1, 1), UH6402 = c(1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1,
0, 1, 1), UH6403 = c(1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
1, 1), UH6404 = c(0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1,
1), UH6409 = c(1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0,
1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0
), UH6410 = c(1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
), UH6411 = c(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,
1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1
), UH6412 = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
), UH6503 = c(1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
), UH66 = c(1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
UH68 = c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0), UH6501a = c(1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), UH6405a = c(1,
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1,
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
1, 0, 1, 1), UH6407a = c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1), weight = c(405.002592353822,
479.360356183825, 526.548105855472, 810.005184707644, 312.321528531308,
930.961115757095, 567.383058387095, 475.323944260643, 1226.91439266118,
517.086839792615, 1200.2669656949, 810.005184707644, 656.723784884795,
605.370463928298, 668.467435759576, 558.112457492436, 793.751055244424,
479.360356183825, 1226.91439266118, 1606.54816212786, 1657.48609449633,
300.803580980276, 605.370463928298, 1140.55078447979, 669.102760422943,
810.005184707644, 1657.48609449633, 305.569853371963, 2994.30343152033,
762.922030382216, 479.360356183825, 1147.36030437824, 668.467435759576,
517.086839792615, 479.360356183825, 399.141865860217, 656.723784884795,
913.364738988386, 312.321528531308, 569.10576379231, 775.630259688922,
1207.22952429547, 1053.09621171094, 1140.55078447979, 314.857225320909,
668.467435759576, 2416.57081451012, 573.680152189121, 396.875527622212,
605.370463928298, 1036.3159447043, 3088.62283807823, 569.10576379231,
1140.55078447979, 2416.57081451012, 1147.36030437824, 762.922030382216,
702.064141140629, 351.032070570315, 629.714450641817, 517.086839792615,
1996.20228768022, 828.743047248167, 475.323944260643, 920.185794495882,
793.751055244424, 796.08788273764, 1197.42559758065, 405.002592353822,
418.584343119327, 300.803580980276, 654.76828203733, 2740.09421696516,
351.032070570315, 1069.6202614693, 2094.91447516374, 399.141865860217,
654.76828203733, 1003.65414063441, 573.680152189121, 851.074587580641,
913.364738988386, 762.922030382216, 1034.17367958523, 573.680152189121,
479.360356183825, 3208.8607844079, 654.76828203733, 908.055695892447,
328.361892442398, 1036.3159447043, 702.064141140629, 613.457196330588,
601.607161960551, 567.383058387095, 479.360356183825, 306.261087672466,
920.185794495882, 654.76828203733, 828.743047248167)), .Names = c("UH6401",
"UH6402", "UH6403", "UH6404", "UH6409", "UH6410", "UH6411", "UH6412",
"UH6503", "UH66", "UH68", "UH6501a", "UH6405a", "UH6407a", "weight"
), row.names = c(NA, 100L), class = "data.frame")

在社会科学中,我们经常有一个权重变量,通过该变量的因子对案例(行)进行加权,以校正样本以适应例如按年龄段划分的人口。如果某行的权重变量为“1.6”,则意味着该行需要观察 1.6 次才能拟合基础总体。

在 SPSS 我会写
WEIGHT BY weight. 

并且该命令之后的所有程序都会相应地对数据进行加权。

在 R 中,我可以使用命令 stabs 来做到这一点
xtabs(weight ~ UH6401, data=df)

但是如果我想进行 SVD 或 PCA 分析呢?这里没有像在 xtabs 中那样对数据进行加权的功能。

所以问题是,是否有一种方法可以像在 SPSS 中那样对 R 中的数据进行加权?
整数的点很容易,使用因子“2”我们只需将线加倍,但是所有的小数因子是什么?

更新:

SVD 或 PCA 只是一个例子!采取任何其他统计程序。
在社会科学中,样本从来都不是完美的,但要对样本数据进行统计分析,样本需要代表基本人口,而样本大多不代表。所以我们尝试用权重来解决这个问题,所以样本代表了基本人群!

最佳答案

首先,对这些数据做 PCA 没有意义。其次,SPSS 不执行 PCA,而是执行因子分析,这是另一回事。我知道他们称之为 PCA,但事实并非如此。

SPSS 中的 WEIGHT BY 只不过是一个重复权重,与通过使用 rep() 重复您的案例来进行分析完全相同。 : 完全疯了。链接到您的示例:在 SPSS 中,FACTOR(用于所谓的 PCA)不采用分数权重。

如果您想执行加权过程,唯一明智的方法是为此使用正确的方法/函数/包。在统计学中,没有一刀切的权重程序,这与 SPSS 想让您相信的相反。

在您的示例中:R 中的加权 PCA 包含在 FactoMineR 中和 aroma.light .但我强烈建议你也看看 vegan包,因为它包含更多有用的排序方法,用于您描述的数据。

关于r - 带有 R Part II 的重量数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7026549/

42 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com