gpt4 book ai didi

pandas - 将 csv 文件转换为 Pandas 数据框

转载 作者:行者123 更新时间:2023-12-04 13:50:26 26 4
gpt4 key购买 nike

我有一个 CSV 文件,格式如下:

DATES, 01-12-2010, 01-12-2010, 01-12-2010, 02-12-2010, 02-12-2010, 02-12-2010
UNITS, Hz, kV, MW, Hz, kV, MW
Interval, , , , , ,
00:15, 49.82, 33.73755, 34.65, 49.92, 33.9009, 36.33,
00:30, 49.9, 33.7722, 35.34, 49.89, 33.8382, 37.65,
00:45, 49.94, 33.8316, 33.5, 50.09, 34.07745, 37.41,
01:00, 49.86, 33.94875, 30.91, 50.18, 34.20945, 36.11,
01:15, 49.97, 34.2243, 27.28, 50.11, 34.3596, 33.24,
01:30, 50.02, 34.3332, 26.91, 50.12, 34.452, 31.03,
01:45, 50.01, 34.1286, 31.26, 50, 33.9306, 38.86,
02:00, 50.08, 33.9141, 34.96, 50.14, 33.99165, 38.31,
02:15, 50.07, 33.84975, 35.33, 50.01, 33.9537, 39.78,
02:30, 49.97, 34.0263, 33.63, 50.07, 33.8547, 41.48,

我想将以上内容转换为以下格式的数据框:

                    Hz      kV          MW
DATES_Interval
01-12-2010 00:15 49.82 33.73755 34.65
01-12-2010 00:30 49.9 33.7722 35.34
01-12-2010 00:45 49.94 33.8316 33.5
01-12-2010 01:00 49.86 33.94875 30.91
01-12-2010 01:15 49.97 34.2243 27.28
01-12-2010 01:30 50.02 34.3332 26.91
01-12-2010 01:45 50.01 34.1286 31.26
01-12-2010 02:00 50.08 33.9141 34.96
01-12-2010 02:15 50.07 33.84975 35.33
01-12-2010 02:30 49.97 34.0263 33.63
02-12-2010 00:15 49.92 33.9009 36.33
02-12-2010 00:30 49.89 33.8382 37.65
02-12-2010 00:45 50.09 34.07745 37.41
02-12-2010 01:00 50.09 34.07745 37.41
02-12-2010 01:15 50.11 34.3596 33.24
02-12-2010 01:30 50.12 34.452 31.03
02-12-2010 01:45 50 33.9306 38.86
02-12-2010 02:00 50.14 33.99165 38.31
02-12-2010 02:15 50.01 33.9537 39.78
02-12-2010 02:30 50.07 33.8547 41.48

我如何用 pandas 做到这一点?

最佳答案

在 pandas 中做这种事情的关键是 stack()方法:

df.stack(level=0)

但是,我发现到达一个可以使用它的地方,至少特定的 csv 是棘手的。至少可以这么说(几乎肯定有更好的方法来做到这一点!):

df_data = pd.read_csv('e.csv', sep=',\s+', header=None, skiprows=3)[range(7)].set_index(0)
df_cols = pd.read_csv('e.csv', sep=',\s+', header=None, nrows=2).set_index(0)[:2] #interval causing problems
df_ = df_cols.append(df_data).T.set_index(['DATES','UNITS','Interval']).T
df = df_.stack(level=0)
df_dates = map(lambda x: pd.to_datetime(' '.join(x[::-1])), df.index)
df.index = df_dates

In [7]: df
Out[7]:
UNITS Hz MW kV
2010-01-12 00:15:00 49.82 34.65 33.73755
2010-02-12 00:15:00 49.92 36.33, 33.9009
2010-01-12 00:30:00 49.9 35.34 33.7722
2010-02-12 00:30:00 49.89 37.65, 33.8382
2010-01-12 00:45:00 49.94 33.5 33.8316
2010-02-12 00:45:00 50.09 37.41, 34.07745
2010-01-12 01:00:00 49.86 30.91 33.94875
2010-02-12 01:00:00 50.18 36.11, 34.20945
2010-01-12 01:15:00 49.97 27.28 34.2243
2010-02-12 01:15:00 50.11 33.24, 34.3596
2010-01-12 01:30:00 50.02 26.91 34.3332
2010-02-12 01:30:00 50.12 31.03, 34.452
2010-01-12 01:45:00 50.01 31.26 34.1286
2010-02-12 01:45:00 50 38.86, 33.9306
2010-01-12 02:00:00 50.08 34.96 33.9141
2010-02-12 02:00:00 50.14 38.31, 33.99165
2010-01-12 02:15:00 50.07 35.33 33.84975
2010-02-12 02:15:00 50.01 39.78, 33.9537
2010-01-12 02:30:00 49.97 33.63 34.0263
2010-02-12 02:30:00 50.07 41.48, 33.8547

这有点乱,有些列中有逗号!

def clean(s):
try: return float(s.strip(','))
except: return s

In [9]: df.applymap(clean)
Out[9]:
Hz MW kV
2010-01-12 00:15:00 49.82 34.65 33.73755
2010-02-12 00:15:00 49.92 36.33 33.90090
2010-01-12 00:30:00 49.90 35.34 33.77220
2010-02-12 00:30:00 49.89 37.65 33.83820
2010-01-12 00:45:00 49.94 33.50 33.83160
2010-02-12 00:45:00 50.09 37.41 34.07745
2010-01-12 01:00:00 49.86 30.91 33.94875
2010-02-12 01:00:00 50.18 36.11 34.20945
2010-01-12 01:15:00 49.97 27.28 34.22430
2010-02-12 01:15:00 50.11 33.24 34.35960
2010-01-12 01:30:00 50.02 26.91 34.33320
2010-02-12 01:30:00 50.12 31.03 34.45200
2010-01-12 01:45:00 50.01 31.26 34.12860
2010-02-12 01:45:00 50.00 38.86 33.93060
2010-01-12 02:00:00 50.08 34.96 33.91410
2010-02-12 02:00:00 50.14 38.31 33.99165
2010-01-12 02:15:00 50.07 35.33 33.84975
2010-02-12 02:15:00 50.01 39.78 33.95370
2010-01-12 02:30:00 49.97 33.63 34.02630
2010-02-12 02:30:00 50.07 41.48 33.85470

关于pandas - 将 csv 文件转换为 Pandas 数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14514046/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com