gpt4 book ai didi

每个 block 的CUDA线程限制

转载 作者:行者123 更新时间:2023-12-04 13:49:04 28 4
gpt4 key购买 nike

为什么我不能使用Max dimension size of a thread block (x,y,z): (1024, 1024, 64)的最大值?如果我使用(1024, 1024),则无法使用,而当我使用(32, 32)(1, 1024)等时,则可以使用。关于共享内存吗?

这是我来自deviceQuery的结果:

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 3 CUDA Capable device(s)

Device 0: "Tesla M2070"
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 5375 MBytes (5636554752 bytes)
(14) Multiprocessors, ( 32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock rate: 1147 MHz (1.15 GHz)
Memory Clock rate: 1566 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 6 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Device 1: "Tesla M2070"
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 5375 MBytes (5636554752 bytes)
(14) Multiprocessors, ( 32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock rate: 1147 MHz (1.15 GHz)
Memory Clock rate: 1566 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 20 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Device 2: "Tesla M2070"
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 5375 MBytes (5636554752 bytes)
(14) Multiprocessors, ( 32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock rate: 1147 MHz (1.15 GHz)
Memory Clock rate: 1566 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 17 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla M2070 (GPU0) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU0) -> Tesla M2070 (GPU2) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU2) : Yes
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU0) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU2) -> Tesla M2070 (GPU0) : No
> Peer access from Tesla M2070 (GPU2) -> Tesla M2070 (GPU1) : Yes

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 5.5, CUDA Runtime Version = 5.5, NumDevs = 3, Device0 = Tesla M2070, Device1 = Tesla M2070, Device2 = Tesla M2070
Result = PASS

最佳答案

Why I can't use max of Max dimension size of a thread block (x,y,z): (1024, 1024, 64)?



因为这些尺寸中的每一个都是对该尺寸的单独限制。 deviceQuery打印输出中还指出了一个附加的总体限制:
Maximum number of threads per block:           1024

一个线程块最多由3维结构组成,因此一个块中的线程总数等于您选择的各个维度的乘积。此乘积还必须小于或等于1024(且大于0)。这只是设备的另一个硬件限制。

Is it about shared memory?



以上与共享内存的任何使用无关。 (您的代码无论如何似乎都没有使用共享内存。)

关于每个 block 的CUDA线程限制,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31735138/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com