gpt4 book ai didi

python - GPU 上的训练速度会随着时间变慢

转载 作者:行者123 更新时间:2023-12-04 13:47:23 25 4
gpt4 key购买 nike

我的模型训练速度becomes slower over time .每个时代都需要更长的时间来训练。
这是full source code带着我的预处理情绪 tree bank data (将 glove.840B.300d.txt 放入 data/glove 中)。
安装一些python包:

pip install meowlogtool
pip install tqdm
运行命令:
python sentiment.py --emblr 0 --rel_dim 0 --tag_dim 0 --optim adagrad --name basic --lr 0.05 --wd 1e-4 --at_hid_dim 0
模型源码供大家阅读
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable as Var
import utils
import Constants
from model import SentimentModule
from embedding_model import EmbeddingModel

class SimpleGRU(nn.Module):
"""
w[i] : (300, 1)
h[i] : (150, 1)
p[i] : (20, 1)
r[i] : (20, 1)
k[i] : (150, 1)
x[i] : (20 + 150 + 300 + 20 = 490, 1) (490, 1)
Uz, Ur, Uh : (150, 150) => 67500 => (450, 450)
Wz, Wr, Wh : (150, 20 + 150 + 300 + 20) (150, 490)
"""
def __init__(self, cuda, in_dim, hid_dim):
super(SimpleGRU, self).__init__()
self.cudaFlag = cuda

self.Uz = nn.Linear(hid_dim, hid_dim)
self.Ur = nn.Linear(hid_dim, hid_dim)
self.Uh = nn.Linear(hid_dim, hid_dim)

self.Wz = nn.Linear(in_dim, hid_dim)
self.Wr = nn.Linear(in_dim, hid_dim)
self.Wh = nn.Linear(in_dim, hid_dim)

if self.cudaFlag:
self.Uz = self.Uz.cuda()
self.Ur = self.Uz.cuda()
self.Uh = self.Uz.cuda()

self.Wz = self.Wz.cuda()
self.Wr = self.Wr.cuda()
self.Wh = self.Wh.cuda()

def forward(self, x, h_prev):
"""
Simple-GRU(compress_x[v], h[t-1]) :
z[t] := s(Wz *compress_x[t]+ Uz * h[t-1] + bz)
r[t] := s(Wr * compress_x[t] + Ur * h[t-1] + br)
h_temp[t] := g(Wh * compress_x[t] + Uh * h[t-1] + bh)
h[t] := r[t] .* h[t-1] + (1 - z[t]) .* h_temp[t]
return h[t]
:param x: compress_x[t]
:param h_prev: h[t-1]
:return:
"""
z = F.sigmoid(self.Wz(x) + self.Uz(h_prev))
r = F.sigmoid(self.Wr(x) + self.Ur(h_prev))
h_temp = F.tanh(self.Wh(x) + self.Uh(h_prev))
h = r*h_prev + (1-z)*h_temp
return h



class TreeSimpleGRU(nn.Module):
def __init__(self, cuda, word_dim, tag_dim, rel_dim, mem_dim, at_hid_dim, criterion, leaf_h = None):
super(TreeSimpleGRU, self).__init__()
self.cudaFlag = cuda
# self.gru_cell = nn.GRUCell(word_dim + tag_dim, mem_dim)
self.gru_cell = SimpleGRU(self.cudaFlag, word_dim+tag_dim, mem_dim)
self.gru_at = GRU_AT(self.cudaFlag, word_dim + tag_dim + rel_dim + mem_dim, at_hid_dim ,mem_dim)
self.mem_dim = mem_dim
self.in_dim = word_dim
self.tag_dim = tag_dim
self.rel_dim = rel_dim
self.leaf_h = leaf_h # init h for leaf node
if self.leaf_h == None:
self.leaf_h = Var(torch.rand(1, self.mem_dim))
torch.save(self.leaf_h, 'leaf_h.pth')

if self.cudaFlag:
self.leaf_h = self.leaf_h.cuda()

self.criterion = criterion
self.output_module = None


def getParameters(self):
"""
Get flatParameters
note that getParameters and parameters is not equal in this case
getParameters do not get parameters of output module
:return: 1d tensor
"""
params = []
for m in [self.gru_cell, self.gru_at]:
# we do not get param of output module
l = list(m.parameters())
params.extend(l)

one_dim = [p.view(p.numel()) for p in params]
params = F.torch.cat(one_dim)
return params


def set_output_module(self, output_module):
self.output_module = output_module

def forward(self, tree, w_emb, tag_emb, rel_emb, training = False):
loss = Var(torch.zeros(1)) # init zero loss
if self.cudaFlag:
loss = loss.cuda()

for idx in xrange(tree.num_children):
_, child_loss = self.forward(tree.children[idx], w_emb, tag_emb, rel_emb, training)
loss = loss + child_loss

if tree.num_children > 0:
child_rels, child_k = self.get_child_state(tree, rel_emb)
if self.tag_dim > 0:
tree.state = self.node_forward(w_emb[tree.idx - 1], tag_emb[tree.idx -1], child_rels, child_k)
else:
tree.state = self.node_forward(w_emb[tree.idx - 1], None, child_rels, child_k)
elif tree.num_children == 0:
if self.tag_dim > 0:
tree.state = self.leaf_forward(w_emb[tree.idx - 1], tag_emb[tree.idx -1])
else:
tree.state = self.leaf_forward(w_emb[tree.idx - 1], None)

if self.output_module != None:
output = self.output_module.forward(tree.state, training)
tree.output = output
if training and tree.gold_label != None:
target = Var(utils.map_label_to_target_sentiment(tree.gold_label))
if self.cudaFlag:
target = target.cuda()
loss = loss + self.criterion(output, target)
return tree.state, loss


def leaf_forward(self, word_emb, tag_emb):
"""
Forward function for leaf node
:param word_emb: word embedding of current node u
:param tag_emb: tag embedding of current node u
:return: k of current node u
"""
h = self.leaf_h
if self.cudaFlag:
h = h.cuda()
if self.tag_dim > 0:
x = F.torch.cat([word_emb, tag_emb], 1)
else:
x = word_emb
k = self.gru_cell(x, h)
return k


def node_forward(self, word_emb, tag_emb, child_rels, child_k):
"""
Foward function for inner node
:param word_emb: word embedding of current node u
:param tag_emb: tag embedding of current node u
:param child_rels (tensor): rels embedding of child node v
:param child_k (tensor): k of child node v
:return:
"""
n_child = child_k.size(0)
h = Var(torch.zeros(1, self.mem_dim))
if self.cudaFlag:
h = h.cuda()

for i in range(0, n_child):
k = child_k[i]
x_list = [word_emb, k]
if self.rel_dim >0:
rel = child_rels[i]
x_list.append(rel)
if self.tag_dim > 0:
x_list.append(tag_emb)
x = F.torch.cat(x_list, 1)
h = self.gru_at(x, h)
k = h
return k

def get_child_state(self, tree, rels_emb):
"""
Get child rels, get child k
:param tree: tree we need to get child
:param rels_emb (tensor):
:return:
"""
if tree.num_children == 0:
assert False # never get here
else:
child_k = Var(torch.Tensor(tree.num_children, 1, self.mem_dim))
if self.rel_dim>0:
child_rels = Var(torch.Tensor(tree.num_children, 1, self.rel_dim))
else:
child_rels = None
if self.cudaFlag:
child_k = child_k.cuda()
if self.rel_dim > 0:
child_rels = child_rels.cuda()
for idx in xrange(tree.num_children):
child_k[idx] = tree.children[idx].state
if self.rel_dim > 0:
child_rels[idx] = rels_emb[tree.children[idx].idx - 1]
return child_rels, child_k

class AT(nn.Module):
"""
AT(compress_x[v]) := sigmoid(Wa * tanh(Wb * compress_x[v] + bb) + ba)
"""
def __init__(self, cuda, in_dim, hid_dim):
super(AT, self).__init__()
self.cudaFlag = cuda
self.in_dim = in_dim
self.hid_dim = hid_dim

self.Wa = nn.Linear(hid_dim, 1)
self.Wb = nn.Linear(in_dim, hid_dim)

if self.cudaFlag:
self.Wa = self.Wa.cuda()
self.Wb = self.Wb.cuda()

def forward(self, x):
out = F.sigmoid(self.Wa(F.tanh(self.Wb(x))))
return out


class GRU_AT(nn.Module):
def __init__(self, cuda, in_dim, at_hid_dim ,mem_dim):
super(GRU_AT, self).__init__()
self.cudaFlag = cuda
self.in_dim = in_dim
self.mem_dim = mem_dim
self.at_hid_dim = at_hid_dim
if at_hid_dim > 0:
self.at = AT(cuda, in_dim, at_hid_dim)
self.gru_cell = SimpleGRU(self.cudaFlag, in_dim, mem_dim)

if self.cudaFlag:
if at_hid_dim > 0:
self.at = self.at.cuda()
self.gru_cell = self.gru_cell.cuda()

def forward(self, x, h_prev):
"""

:param x:
:param h_prev:
:return: a * m + (1 - a) * h[t-1]
"""
m = self.gru_cell(x, h_prev)
if self.at_hid_dim > 0:
a = self.at.forward(x)
h = torch.mm(a, m) + torch.mm((1-a), h_prev)
else:
h = m
return h

class TreeGRUSentiment(nn.Module):
def __init__(self, cuda, in_dim, tag_dim, rel_dim, mem_dim, at_hid_dim, num_classes, criterion):
super(TreeGRUSentiment, self).__init__()
self.cudaFlag = cuda
self.tree_module = TreeSimpleGRU(cuda, in_dim, tag_dim, rel_dim, mem_dim, at_hid_dim, criterion)
self.output_module = SentimentModule(cuda, mem_dim, num_classes, dropout=True)
self.tree_module.set_output_module(self.output_module)

def get_tree_parameters(self):
return self.tree_module.getParameters()

def forward(self, tree, sent_emb, tag_emb, rel_emb, training = False):
# sent_emb = F.torch.unsqueeze(self.word_embedding.forward(sent_inputs), 1)
# tag_emb = F.torch.unsqueeze(self.tag_emb.forward(tag_inputs), 1)
# rel_emb = F.torch.unsqueeze(self.rel_emb.forward(rel_inputs), 1)
# sent_emb, tag_emb, rel_emb = self.embedding_model(sent_inputs, tag_inputs, rel_inputs)

tree_state, loss = self.tree_module(tree, sent_emb, tag_emb, rel_emb, training)
output = tree.output
return output, loss

最佳答案

Why does neural network learning slow down as the error gets lower?


The reasons for the slowdown are not fully understood, but we have some basic ideas.

For classifiers, most training examples start out as incorrectly classified. Over time, more of them become correctly classified. Early in learning, you might have a nearly 100% error rate, so every example in the minibatch contributes to learning. Late in learning, you might have nearly a 0% error rate, so almost none of the examples in the minibatch contribute to learning. This problem can be resolved to some extent by using hard example mining or importance sampling. Both of these are just techniques for training on more difficult examples more often.

There are other more complicated reasons. One of them is that the condition number of the Hessian tends to worsen a lot as learning progresses, so that the optimal step size becomes smaller and smaller.

关于python - GPU 上的训练速度会随着时间变慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43906242/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com