- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
有两个表,条目可能有不同的 id 类型。我需要根据 df1 的 id_type 和 df2 的正确列连接两个表。问题的背景,id是金融界的证券id,id类型可能是CUSIP、ISIN、RIC等。
print(df1)
id id_type value
0 11 type_A 0.1
1 22 type_B 0.2
2 13 type_A 0.3
print(df2)
type_A type_B type_C
0 11 21 xx
1 12 22 yy
2 13 23 zz
所需的输出是
type_A type_B type_C value
0 11 21 xx 0.1
1 12 22 yy 0.2
2 13 23 zz 0.3
最佳答案
这是一种替代方法,可以推广到许多安全类型(CUSIP、ISIN、RIC、SEDOL 等)。
一、创建df1
和 df2
沿着原始示例的路线:
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'sec_id': [11, 22, 33],
'sec_id_type': ['CUSIP', 'ISIN', 'RIC'],
'value': [100, 200, 300]})
df2 = pd.DataFrame({'CUSIP': [11, 21, 31],
'ISIN': [21, 22, 23],
'RIC': [31, 32, 33],
'SEDOL': [41, 42, 43]})
二、创建中间数据框
x1
.我们将第一列用于一个连接,第二和第三列用于不同的连接:
index = [idx for idx in df2.index for _ in df2.columns]
sec_id_types = df2.columns.to_list() * df2.shape[0]
sec_ids = df2.values.ravel()
data = [
(idx, sec_id_type, sec_id)
for idx, sec_id_type, sec_id in zip(index, sec_id_types, sec_ids)
]
x1 = pd.DataFrame.from_records(data, columns=['index', 'sec_id_type', 'sec_id'])
加入
df1
和
x1
从
df1
中提取值:
x2 = (x1.merge(df1, on=['sec_id_type', 'sec_id'], how='left')
.dropna()
.set_index('index'))
最后加入
df2
和
x1
(从上一步)得到最终结果
print(df2.merge(x2, left_index=True, right_index=True, how='left'))
CUSIP ISIN RIC SEDOL sec_id_type sec_id value
0 11 21 31 41 CUSIP 11 100.0
1 21 22 32 42 ISIN 22 200.0
2 31 23 33 43 RIC 33 300.0
栏目
sec_id_type
和
sec_id
显示连接按预期工作。
关于pandas - 使用 Pandas ,如何在变量索引上连接两个表?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62841858/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!