gpt4 book ai didi

matlab - MATLAB randn 数组中的定向伪像?

转载 作者:行者123 更新时间:2023-12-04 13:32:59 24 4
gpt4 key购买 nike

我正在使用各种方法在 MATLAB 中生成 3d 分形噪声。它工作得比较好,但我遇到了一个问题,我在我的噪音中看到了垂直条纹伪影。无论我使用什么数据类型或分辨率,都会发生这种情况。
编辑:我想通了。该解决方案作为答案发布在下面。谢谢大家的意见和指导!
example image

expo = 2^6;
dims = [expo,expo,expo];
beta = -4.5;

render = randnd(beta, dims); % Create volumetric fractal
render = render - min(render); % Set floor to zero
render = render ./ max(render); % Set ceiling to one
%render = imbinarize(render); % BW Threshold option
render = render .* 255; % For greyscale

slicer = 1; % Turn on image slicer/saver
i = 0; % Page counter
format = '.png';
imagename = '___testDump/slice';

imshow(render(:,:,1),[0 255]); %Single test image

if slicer == 1
for c = 1:length(render)
i = i+1;
pagenumber = num2str(i);
filename = [imagename, pagenumber, format];
imwrite(uint8(render(:,:,i)),filename)
end
end

function X = randnd(beta,varargin)

seed = 999;
rng(seed); % Set seed

%% X = randnd(beta,varargin)

% Based on similar functions by Jon Yearsley and Hristo Zhivomirov
% Written by Marcin Konowalczyk
% Timmel Group @ Oxford University

%% Parse the input
narginchk(0,Inf); nargoutchk(0,1);

if nargin < 2 || isempty(beta); beta = 0; end % Default to white noise
assert(isnumeric(beta) && isequal(size(beta),[1 1]),'''beta'' must be a number');
assert(-6 <= beta && beta <= 6,'''beta'' out of range'); % Put on reasonable bounds

%% Generate N-dimensional white noise with 'randn'
X = randn(varargin{:});
if isempty(X); return; end; % Usually happens when size vector contains zeros

% Squeeze prevents an error if X has more than one leading singleton dimension
% This is a slight deviation from the pure functionality of 'randn'
X = squeeze(X);

% Return if white noise is requested
if beta == 0; return; end;

%% Generate corresponding N-dimensional matrix of multipliers
N = size(X);
% Create matrix of multipliers (M) of X in the frequency domain
M = [];
for j = 1:length(N)
n = N(j);

if (rem(n,2)~=0) % if n is odd
% Nyquist frequency bin does not show up in odd-numbered fft
k = ifftshift(-(n-1)/2:(n-1)/2);
else
k = ifftshift(-n/2:n/2-1);
end

% Spectral multipliers
m = (k.^2)';

if isempty(M);
M = m;
else
% Create the permutation vector
M_perm = circshift(1:length(size(M))+1,[0 1]);
% Permute a singleton dimension to the beginning of M
M = permute(M,M_perm);
% Add m along the first dimension of M
M = bsxfun(@plus,M,m);
end
end
% Reverse M to match X (since new dimensions were being added form the left)
M = permute(M,length(size(M)):-1:1);
assert(isequal(size(M),size(X)),'Bad programming error'); % This should never occur

% Shape the amplitude multipliers by beta/4 which corresponds to shaping the power by beta
M = M.^(beta/4);

% Set the DC component to zero
M(1,1) = 0;

%% Multiply X by M in frequency domain
Xstd = std(X(:));
Xmean = mean(X(:));
X = real(ifftn(fftn(X).*M));

% Force zero mean unity standard deviation
X = X - mean(X(:));
X = X./std(X(:));

% Restore the standard deviation and mean from before the spectral shaping.
% This ensures the random sample from randn is truly random. After all, if
% the mean was always exactly zero it would not be all that random.
X = X + Xmean;
X = X.*Xstd;
end

最佳答案

这是我的解决方案:
我的“最小/最大”代码(第 6 行和第 7 行)很糟糕。我想将矩阵中的所有值除以矩阵中的单个最大值,以便所有值都在 0 和 1 之间。因为我不正确地使用了 max(),所以我正在逐步遍历每列的最大值并将其用作我的除数;因此,垂直条纹。
最后这就是我的代码的样子。 X 是 3 维矩阵:

minVal = min(X,[],'all'); % Get the lowest value in the entire matrix
X = X - minVal; % Set min value to zero
maxVal = max(X,[],'all'); % Get the highest value in the entire matrix
X = X ./ maxVal; % Set max value to one

关于matlab - MATLAB randn 数组中的定向伪像?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63925577/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com