- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在数据集上测试逻辑回归模型(例如3个预测变量X1,X2,X3的3个系数)。我知道在使用以下方法创建模型对象后如何测试模型:
mymodel <- glm( Outcome ~ X1 + X2 + X3 , family = binomial,data=trainDat)
prob <- predict(mymodel,type="response",newdata=test)
mymodel <- glm(Outcome ~ offset(C1 * X1) + offset(C2 * X2) + X3,
family = binomial, data = trainDat)
最佳答案
我找不到一个简单的函数来执行此操作。 predict
函数中有一些代码取决于拥有合适的模型(例如确定模型的等级)。但是,我们可以创建一个函数来创建可与预测一起使用的假glm对象。这是我第一次尝试这种功能
makeglm <- function(formula, family, data=NULL, ...) {
dots <- list(...)
out<-list()
tt <- terms(formula, data=data)
if(!is.null(data)) {
mf <- model.frame(tt, data)
vn <- sapply(attr(tt, "variables")[-1], deparse)
if((yvar <- attr(tt, "response"))>0)
vn <- vn[-yvar]
xlvl <- lapply(data[vn], function(x) if (is.factor(x))
levels(x)
else if (is.character(x))
levels(as.factor(x))
else
NULL)
attr(out, "xlevels") <- xlvl[!vapply(xlvl,is.null,NA)]
attr(tt, "dataClasses") <- sapply(data[vn], stats:::.MFclass)
}
out$terms <- tt
coef <- numeric(0)
stopifnot(length(dots)>1 & !is.null(names(dots)))
for(i in seq_along(dots)) {
if((n<-names(dots)[i]) != "") {
v <- dots[[i]]
if(!is.null(names(v))) {
coef[paste0(n, names(v))] <- v
} else {
stopifnot(length(v)==1)
coef[n] <- v
}
} else {
coef["(Intercept)"] <- dots[[i]]
}
}
out$coefficients <- coef
out$rank <- length(coef)
out$qr <- list(pivot=seq_len(out$rank))
out$family <- if (class(family) == "family") {
family
} else if (class(family) == "function") {
family()
} else {
stop(paste("invalid family class:", class(family)))
}
out$deviance <- 1
out$null.deviance <- 1
out$aic <- 1
class(out) <- c("glm","lm")
out
}
predict
和
print
期望在此类对象上找到的所有值。现在我们可以对其进行测试。首先,这是一些测试数据
set.seed(15)
dd <- data.frame(
X1=runif(50),
X2=factor(sample(letters[1:4], 50, replace=T)),
X3=rpois(50, 5),
Outcome = sample(0:1, 50, replace=T)
)
mymodel<-glm(Outcome~X1+X2+X3, data=dd, family=binomial)
Call: glm(formula = Outcome ~ X1 + X2 + X3, family = binomial, data = dd)
Coefficients:
(Intercept) X1 X2b X2c X2d X3
-0.4411 0.8853 1.8384 0.9455 1.5059 -0.1818
Degrees of Freedom: 49 Total (i.e. Null); 44 Residual
Null Deviance: 68.03
Residual Deviance: 62.67 AIC: 74.67
makeglm
函数的方法
newmodel <- makeglm(Outcome~X1+X2+X3, binomial, data=dd,
-.5, X1=1, X2=c(b=1.5, c=1, d=1.5), X3=-.15)
glm
一样,它定义了响应和协变量。接下来,像使用
glm()
一样指定家庭。而且您需要传递一个数据帧,以便R可以为每个涉及的变量嗅探正确的数据类型。这还将使用data.frame识别所有因子变量及其水平。因此,这可以是编码的新数据,就像适合的data.frame一样,也可以是原始数据。
newmodel
与预测一起使用。
predict(mymodel, type="response")
# 1 2 3 4 5
# 0.4866398 0.3553439 0.6564668 0.7819917 0.3008108
predict(newmodel, newdata=dd, type="response")
# 1 2 3 4 5
# 0.5503572 0.4121811 0.7143200 0.7942776 0.3245525
关于r - 手动建立逻辑回归模型以在R中进行预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24112860/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!