- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 tensorflow 中恢复模型时使用批处理规范有一个小问题。
以下是我的批量标准,来自 here :
def _batch_normalization(self, input_tensor, is_training, batch_norm_epsilon, decay=0.999):
"""batch normalization for dense nets.
Args:
input_tensor: `tensor`, the input tensor which needed normalized.
is_training: `bool`, if true than update the mean/variance using moving average,
else using the store mean/variance.
batch_norm_epsilon: `float`, param for batch normalization.
decay: `float`, param for update move average, default is 0.999.
Returns:
normalized params.
"""
# actually batch normalization is according to the channels dimension.
input_shape_channels = int(input_tensor.get_shape()[-1])
# scala and beta using in the the formula like that: scala * (x - E(x))/sqrt(var(x)) + beta
scale = tf.Variable(tf.ones([input_shape_channels]))
beta = tf.Variable(tf.zeros([input_shape_channels]))
# global mean and var are the mean and var that after moving averaged.
global_mean = tf.Variable(tf.zeros([input_shape_channels]), trainable=False)
global_var = tf.Variable(tf.ones([input_shape_channels]), trainable=False)
# if training, then update the mean and var, else using the trained mean/var directly.
if is_training:
# batch norm in the channel axis.
axis = list(range(len(input_tensor.get_shape()) - 1))
batch_mean, batch_var = tf.nn.moments(input_tensor, axes=axis)
# update the mean and var.
train_mean = tf.assign(global_mean, global_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(global_var, global_var * decay + batch_var * (1 - decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(input_tensor,
batch_mean, batch_var, beta, scale, batch_norm_epsilon)
else:
return tf.nn.batch_normalization(input_tensor,
global_mean, global_var, beta, scale, batch_norm_epsilon)
tf.train.Saver()
保存它.下面是测试代码:
def inference(self, images_for_predict):
"""load the pre-trained model and do the inference.
Args:
images_for_predict: `tensor`, images for predict using the pre-trained model.
Returns:
the predict labels.
"""
tf.reset_default_graph()
images, labels, _, _, prediction, accuracy, saver = self._build_graph(1, False)
predictions = []
correct = 0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# saver = tf.train.import_meta_graph('./models/dense_nets_model/dense_nets.ckpt.meta')
# saver.restore(sess, tf.train.latest_checkpoint('./models/dense_nets_model/'))
saver.restore(sess, './models/dense_nets_model/dense_nets.ckpt')
for i in range(100):
pred, corr = sess.run([tf.argmax(prediction, 1), accuracy],
feed_dict={
images: [images_for_predict.images[i]],
labels: [images_for_predict.labels[i]]})
correct += corr
predictions.append(pred[0])
print("PREDICTIONS:", predictions)
print("ACCURACY:", correct / 100)
('PREDICTIONS:', [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
('ACCURACY:', 0.080000000000000002)
images_for_predict = mnist.test
和
self._build_graph
方法有两个参数:
batch_size
和
is_training
.
最佳答案
在尝试了很多方法后,我解决了这个问题,以下是我所做的。
首先感谢@gdelab,我使用了tf.layers.batch_normalization
相反,所以我的批处理规范函数是这样的:
def _batch_normalization(self, input_tensor, is_training):
return tf.layers.batch_normalization(input_tensor, training=is_training)
is_training
是这样的占位符:
is_training = tf.placeholder(tf.bool)
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
train_step = tf.train.AdamOptimizer(self.learning_rate).minimize(cross_entropy)
tf.layers.batch_normalization
添加更新均值和方差不会自动添加为火车操作的依赖项 - 因此,如果您不做任何额外的事情,它们永远不会运行。
saver = tf.train.Saver(var_list=tf.global_variables())
savepath = saver.save(sess, 'here_is_your_personal_model_path')
var_list=tf.global_variables()
参数确保 tensorflow 保存所有参数,包括设置为不可训练的全局均值/方差。
# build the graph like training:
images, labels, _, _, prediction, accuracy, saver = self._build_graph(1, False)
saver = tf.train.Saver()
saver.restore(sess, 'here_is_your_personal_model_path')
关于tensorflow - 恢复模型时使用批量规范?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46809290/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!