- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何仅使用分类列联表在r中使用ROCR软件包绘制ROC曲线?
我有一个列联表,可以计算出真阳性,假阳性等所有额定值。我有500个副本,因此有500个表。但是,我无法生成表示估计概率和真实性的每种情况的预测数据。没有单独的数据如何获得曲线。
以下是所使用的包装说明。
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf)
最佳答案
您无法使用单个列联表生成完整的ROC曲线,因为列联表仅提供单个灵敏度/特异性对(对于用于生成列联表的任何预测截止值)。
如果您有许多用不同的截止值生成的列联表,则可以估算ROC曲线(基本上,它将是列联表中灵敏度/特异性值之间的线性插值)。例如,让我们考虑使用逻辑回归预测虹膜数据集中的花朵是否为杂色:
iris$isv <- as.numeric(iris$Species == "versicolor")
mod <- glm(isv~Sepal.Length+Sepal.Width, data=iris, family="binomial")
ROCR
代码为该模型计算ROC曲线:
library(ROCR)
pred1 <- prediction(predict(mod), iris$isv)
perf1 <- performance(pred1,"tpr","fpr")
plot(perf1)
mod
之外,我们拥有的是列联表,其中包含一些用于预测的临界值:
tables <- lapply(seq(0, 1, .1), function(x) table(iris$isv, factor(predict(mod, type="response") >= x, levels=c(F, T))))
# Predict TRUE if predicted probability at least 0
tables[[1]]
# FALSE TRUE
# 0 0 100
# 1 0 50
# Predict TRUE if predicted probability at least 0.5
tables[[6]]
# FALSE TRUE
# 0 86 14
# 1 29 21
# Predict TRUE if predicted probability at least 1
tables[[11]]
# FALSE TRUE
# 0 100 0
# 1 50 0
fake.info <- do.call(rbind, lapply(1:(length(tables)-1), function(idx) {
true.neg <- tables[[idx+1]][1,1] - tables[[idx]][1,1]
false.neg <- tables[[idx+1]][2,1] - tables[[idx]][2,1]
if (true.neg <= 0 & false.neg <= 0) {
return(NULL)
} else {
return(data.frame(fake.pred=idx,
outcome=rep(c(0, 1), times=c(true.neg, false.neg))))
}
}))
pred2 <- prediction(fake.info$fake.pred, fake.info$outcome)
perf2 <- performance(pred2,"tpr","fpr")
plot(perf2)
关于r - 如何使用r中的ROCR软件包绘制ROC曲线*仅带有分类列联表*,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28443834/
我正在尝试创建 treasury yield curve 的图表比较两个不同日期的汇率。我很难将两条曲线组合起来并创建一个干净的图形。 我的问题:如何将两条 yield 曲线绘制在一起, yield
我在 R 平台中使用 randomForest 包进行分类任务。 rf_object<-randomForest(data_matrix, label_factor, cutoff=c(k,1-k))
我的设计师给我设计了这个设计,但我不知道如何最好地处理图像上方和下方的曲线。 我考虑过 clip-path 但不知道如何 flex 它。如果可以的话,我不想使用图像。 最佳答案 您可以使用 borde
我正在使用 Canvas 中的笔触和路径来制作两条线,我希望它们像波浪效果一样弯曲。而不是在 Photoshop 中创建实际图像来实现此目的。 谁能帮忙得到如下图所示的曲线? 我还想在末端实现圆 An
我正在尝试开发一种可以处理图像骨架的路径/曲线的代码。我想要一个来自两点之间骨架的点 vector 。 这段代码加了点就结束了,没找到解决办法。 #include "opencv2/highgui/
现在需要帮助。我可以用MKPolyline和MKPolylineView画线,但是如何在MKMapView上的两个坐标之间画弧线或曲线呢?非常感谢。 最佳答案 在回答问题之前,重要的是要提到 MKOv
我正在尝试应用 sklearn 的想法 ROC extension to multiclass到我的数据集。我的每类 ROC 曲线看起来都找到了一条直线,取消显示曲线波动的 sklearn 示例。 我
我有以下概念问题,我无法理解。 以下是调查数据示例,其中我有一个时间列,指示某人需要多长时间才能回答某个问题。 现在,我感兴趣的是清洁量将如何根据此阈值发生变化,即如果我增加阈值会发生什么,如果我降低
如何为使用视频的对象检测应用绘制每个窗口的误报率与未命中率(或误报概率)和 ROC(接收器操作曲线)的图表?如何确定误报和命中的数量?一个例子是很有用。 最佳答案 它很简单。将所有真正 (H0) 值存
我正在尝试绘制随机森林分类的 ROC 曲线。绘图有效,但我认为我绘制了错误的数据,因为生成的绘图只有一个点(准确性)。 这是我使用的代码: set.seed(55) data.controls <
我有如下两个模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <-
是否可以仅通过查看其 ROC 曲线来了解分类器是否过度拟合?我看到如果它的 AUC 太高(例如 98%)可能会过度拟合,但这也可能意味着分类器非常好。有没有办法区分这两种情况? 最佳答案 简短的回答:
我正在 JavaFX 中创建一个图形,它应该由有向边连接。最好是双三次曲线。有谁知道如何添加箭头? 箭头当然应该根据曲线的末端进行旋转。 这是一个没有箭头的简单示例: import javafx.ap
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我试图在曲线下方绘制阴影区域,但阴影区域位于曲线上方。谁能告诉我我的代码有什么问题? x=seq(0,30) y1=exp(-0.1*x) plot(x,y1,type="l",lwd=2,col="
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我有一个如下所示的模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <
有没有办法从pyspark中的Spark ML获取ROC曲线上的点?在文档中,我看到了一个 Scala 的例子,但不是 python:https://spark.apache.org/docs/2.1
我正在尝试使用Local Outlier Factor (LOF)算法,并想绘制 ROC 曲线。问题是,scikit-learn 提供的库不会为每个预测生成分数。 那么,有什么办法可以解决这个问题吗?
我目前正在使用 GDI+ 绘制折线图,并使用 Graphics.DrawCurve 来平滑线条。问题是曲线并不总是与我输入的点匹配,这使得曲线在某些点上超出了图形框架,如下所示(红色是 Graph
我是一名优秀的程序员,十分优秀!