gpt4 book ai didi

python - 一种热编码期间的 RunTimeError

转载 作者:行者123 更新时间:2023-12-04 13:26:41 29 4
gpt4 key购买 nike

我有一个数据集,其中类值从 -2 到 2 步 (i.e., -2,-1,0,1,2)其中 9 标识未标记的数据。
使用一种热编码

self._one_hot_encode(labels)
我收到以下错误: RuntimeError: index 1 is out of bounds for dimension 1 with size 1由于
self.one_hot_labels = self.one_hot_labels.scatter(1, labels.unsqueeze(1), 1)
错误应该从 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1] 引发,其中我在映射设置中的 9 等于索引 9 到 1。我不清楚如何修复它,即使经过过去的问题和类似问题的答案(例如, index 1 is out of bounds for dimension 0 with size 1 )。
错误涉及的部分代码如下:
def _one_hot_encode(self, labels):
# Get the number of classes
classes = torch.unique(labels)
classes = classes[classes != 9] # unlabelled
self.n_classes = classes.size(0)

# One-hot encode labeled data instances and zero rows corresponding to unlabeled instances
unlabeled_mask = (labels == 9)
labels = labels.clone() # defensive copying
labels[unlabeled_mask] = 0
self.one_hot_labels = torch.zeros((self.n_nodes, self.n_classes), dtype=torch.float)
self.one_hot_labels = self.one_hot_labels.scatter(1, labels.unsqueeze(1), 1)
self.one_hot_labels[unlabeled_mask, 0] = 0

self.labeled_mask = ~unlabeled_mask

def fit(self, labels, max_iter, tol):

self._one_hot_encode(labels)

self.predictions = self.one_hot_labels.clone()
prev_predictions = torch.zeros((self.n_nodes, self.n_classes), dtype=torch.float)

for i in range(max_iter):
# Stop iterations if the system is considered at a steady state
variation = torch.abs(self.predictions - prev_predictions).sum().item()


prev_predictions = self.predictions
self._propagate()
数据集示例:
ID  Target  Weight  Label   Score   Scale_Cat   Scale_num
0 A D 65.1 1 87 Up 1
1 A X 35.8 1 87 Up 1
2 B C 34.7 1 37.5 Down -2
3 B P 33.4 1 37.5 Down -2
4 C B 33.1 1 37.5 Down -2
5 S X 21.4 0 12.5 NA 9
我用作引用的源代码在这里: https://mybinder.org/v2/gh/thibaudmartinez/label-propagation/master?filepath=notebook.ipynb
错误的完整跟踪:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-126-792a234f63dd> in <module>
4 label_propagation = LabelPropagation(adj_matrix_t)
----> 6 label_propagation.fit(labels_t) # causing error
7 label_propagation_output_labels = label_propagation.predict_classes()
8

<ipython-input-115-54a7dbc30bd1> in fit(self, labels, max_iter, tol)
100
101 def fit(self, labels, max_iter=1000, tol=1e-3):
--> 102 super().fit(labels, max_iter, tol)
103
104 ## Label spreading

<ipython-input-115-54a7dbc30bd1> in fit(self, labels, max_iter, tol)
58 Convergence tolerance: threshold to consider the system at steady state.
59 """
---> 60 self._one_hot_encode(labels)
61
62 self.predictions = self.one_hot_labels.clone()

<ipython-input-115-54a7dbc30bd1> in _one_hot_encode(self, labels)
42 labels[unlabeled_mask] = 0
43 self.one_hot_labels = torch.zeros((self.n_nodes, self.n_classes), dtype=torch.float)
---> 44 self.one_hot_labels = self.one_hot_labels.scatter(1, labels.unsqueeze(1), 1)
45 self.one_hot_labels[unlabeled_mask, 0] = 0
46

RuntimeError: index 1 is out of bounds for dimension 1 with size 1

最佳答案

我浏览了您的笔记本(我认为您将 9 更改为 -1 以便运行)并看到了这部分代码:

# Learn with Label Propagation
label_propagation = LabelPropagation(adj_matrix_t)
print("Label Propagation: ", end="")
label_propagation.fit(labels_t)
label_propagation_output_labels = label_propagation.predict_classes()
最终调用:
self.one_hot_labels = self.one_hot_labels.scatter(1, labels.unsqueeze(1), 1)
是哪里出错了。
花点时间在 scatter 上阅读 pytorch 手册: torch Scatter我们了解到,对于 scatter 来说,理解 dim、index、src 和 self 矩阵很重要。对于一种热编码,dim=1 或 0 无关紧要,我们的 src 矩阵为 1(稍后我们将对此进行更多研究)。您现在正在使用 [40,1] 的索引矩阵和 [40,5] 的结果(自身)矩阵调用维度 1 上的 scatter。
我在这里看到两个问题:
  • 您正在使用文字类别虚拟变量 (-2,-1,0,1,2) 作为索引矩阵中的编码索引。这将导致 scatter 在 src 矩阵中搜索这些索引。 这是来自 的索引越界的地方
  • 您提到未标记的有 -2、-1、0、1、2 和 9 类 6 类,但您是 5 个类的一种热编码。 (是的,我知道您希望未标记的类全部为零,但使用 scatter 实现这一点有点困难。我稍后会解释)。

  • 那么我们如何解决这个问题呢?
    问题 1:让我们从一个小例子开始:
    index = torch.tensor([[5],[0],[3],[5],[1],[4]]); print(index.shape); print(index)
    result = torch.zeros(6, 6, dtype=src.dtype).scatter_(1, index, src); print(result.shape); print(result)
    这会给我们
    torch.Size([6, 1])
    tensor([[5],
    [0],
    [3],
    [5],
    [1],
    [4]])
    torch.Size([6, 6])
    tensor([[0, 0, 0, 0, 0, 1],
    [1, 0, 0, 0, 0, 0],
    [0, 0, 0, 1, 0, 0],
    [0, 0, 0, 0, 0, 1],
    [0, 1, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0]])
    索引矩阵是 6 个观测值和 1 个观测值(类别)
    Self 矩阵是 6 个观测值,具有 6 个类别 1 的热编码向量
    scatter(dim=1) 创建 self 矩阵的方式是 torch 首先检查行(观察),然后将该行的值更改为存储在同一行但在列的 src 矩阵中的值的值存储在索引中的值。
    self[i][index[i][j][k]][k] = src[i][j][k]
    因此,在您的情况下,您试图将 1 的值应用到 self[40,1] 中 index[0] 列(等于 1)的一行中。给你问题中的错误。虽然我检查了你的笔记本,错误是
    对于大小为 5 的维度 1,索引 -1 超出范围。它们都是相同的根本原因。
    问题 2:单热编码
    在这种情况下,使用冷编码进行完整的单热而不是单热更容易。原因是对于单热编码和冷编码,您需要在 src 矩阵中为每个未标记的观察创建一个 0 值。这比仅对 src 使用 1 更痛苦。另请阅读此链接: Is it valid to have full zeros for OHE?我认为对每个类别使用 one-hot 更有意义。
    因此,对于第二个问题,我们只需要简单地将类别映射到结果/自我矩阵的索引中。由于我们有 6 个类别,因此我们只需要将它们映射到 0、1、2、3、4、5。一个简单的 lambda 函数就可以解决问题。我使用随机采样器从类列表中获取数据标签,如下所示:(我从 6 个类中随机创建了 40 个观察值)
    classes = list([-2,-1,0,1,2,9])

    labels = list()
    for i in range(0,40):
    labels.append(list([(lambda x: x+2 if x !=9 else 5)(random.sample(classes,1)[0])]))

    index_aka_labels = torch.tensor(labels)
    print(index_aka_labels)
    print(index_aka_labels.shape)
    torch.zeros(40, 6, dtype=src.dtype).scatter_(1, index_aka_labels, 1)
    最后,我们实现了我们想要的OHE结果:
    tensor([[0, 0, 0, 0, 0, 1],
    [0, 0, 1, 0, 0, 0],
    [0, 0, 0, 0, 1, 0],
    [0, 0, 0, 0, 1, 0],
    ... (40 observations)
    [0, 1, 0, 0, 0, 0],
    [0, 0, 0, 1, 0, 0],
    [1, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 1],

    关于python - 一种热编码期间的 RunTimeError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68045496/

    29 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com