- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我写了下面的代码,它假设加载一个模型,然后对来自 MNIST 数据集的元素进行预测运行。在执行开始时,代码工作正常,我得到了我想要的预测,但突然间我确实收到了以下错误,我不确定这是否与 .predict arguments
有关。 .
我的代码:
# importing libraries
import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays
import gzip,sys,pickle # dataset manipulation library
# importing MNIST dataset
f = gzip.open('mnist.pkl.gz', 'rb')
if sys.version_info < (3,):
data = pickle.load(f)
else:
data = pickle.load(f, encoding='bytes')
f.close()
(x_train, _), (x_test, _) = data
print("-----------------------dataset ready-----------------------")
# using an expample from x_test / to remove later
# preprocessing
x_test = tf.keras.utils.normalize(x_test, axis=1) # scales data between 0 and 1
# importing model
new_model = tf.keras.models.load_model('epic_num_reader.model')
print("-----------------------model ready-----------------------")
# getting prediction
predictions = new_model.predict(x_test[0])
import numpy as np
print("-----------------------predection ready-----------------------")
print(np.argmax(predictions))
-----------------------dataset ready-----------------------
2019-10-27 00:36:58.767359: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
-----------------------model ready-----------------------
Traceback (most recent call last):
File "c:\Users\lotfi\Desktop\DigitsDetector\main1.py", line 24, in <module>
predictions = new_model.predict(x_test[0])
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 909, in predict
use_multiprocessing=use_multiprocessing)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 462, in predict
steps=steps, callbacks=callbacks, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 444, in _model_iteration
total_epochs=1)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 123, in run_one_epoch
batch_outs = execution_function(iterator)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 86, in execution_function
distributed_function(input_fn))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
result = self._call(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 503, in _call
self._initialize(args, kwds, add_initializers_to=initializer_map)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 408, in _initialize
*args, **kwds))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 1848, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2150, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2041, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 915, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 358, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 73, in distributed_function
per_replica_function, args=(model, x, y, sample_weights))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 760, in experimental_run_v2
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 1787, in call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 2132, in _call_for_each_replica
return fn(*args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\autograph\impl\api.py", line 292, in wrapper
return func(*args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 162, in _predict_on_batch
return predict_on_batch(model, x)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 370, in predict_on_batch
return model(inputs) # pylint: disable=not-callable
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 847, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\sequential.py", line 270, in call
outputs = layer(inputs, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 847, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\saving\saved_model\utils.py", line 57, in return_outputs_and_add_losses
outputs, losses = fn(inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
result = self._call(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 494, in _call
results = self._stateful_fn(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 1822, in __call__
graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2150, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2041, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 915, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 358, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\saved_model\function_deserialization.py", line 262, in restored_function_body
"\n\n".join(signature_descriptions)))
ValueError: Could not find matching function to call loaded from the SavedModel. Got:
Positional arguments (1 total):
* Tensor("inputs:0", shape=(None, 28), dtype=float32)
Keyword arguments: {}
Expected these arguments to match one of the following 1 option(s):
Option 1:
Positional arguments (1 total):
* TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs')
Keyword arguments: {}
最佳答案
注意:我认为您的问题出在预测模型部分。在该部分中,您使用了与预训练模型数组维度不匹配的 x_test[0]。您必须使用 x_test 而不是 x_test[0]。 enter image description here
#Use This Code TO Solve Your Problem
import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays
mnist = tf.keras.datasets.mnist # mnist is a dataset of 28x28 images of handwritten digits and their labels
(x_train, y_train),(x_test, y_test) = mnist.load_data() # unpacks images to x_train/x_test and labels to y_train/y_test
x_train = tf.keras.utils.normalize(x_train, axis=1) # scales data between 0 and 1
x_test = tf.keras.utils.normalize(x_test, axis=1) # scales data between 0 and 1
model = tf.keras.models.Sequential() # a basic feed-forward model
model.add(tf.keras.layers.Flatten()) # takes our 28x28 and makes it 1x784
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) # our output layer. 10 units for 10 classes. Softmax for probability distribution
model.compile(optimizer='adam', # Good default optimizer to start with
loss='sparse_categorical_crossentropy', # how will we calculate our "error." Neural network aims to minimize loss.
metrics=['accuracy']) # what to track
model.fit(x_train, y_train, epochs=3) # train the model
val_loss, val_acc = model.evaluate(x_test, y_test) # evaluate the out of sample data with model
print(val_loss) # model's loss (error)
print(val_acc) # model's accuracy
--------------------------Save Model----------------------------------------
model.save('epic_num_reader.model') # save the model
--------------------------Load Model----------------------------------------
new_model = tf.keras.models.load_model('epic_num_reader.model') # Load the model
--------------------------Predict Model-------------------------------------
predictions = new_model.predict(x_test)
print(predictions)
--------------------------visualize Prediction------------------------------
plt.imshow(x_test[0],cmap=plt.cm.binary)
plt.show()
-------------------------- Validated Prediction-----------------------------
import numpy as np
print(np.argmax(predictions[0]))
关于python - 找不到匹配的函数来调用从 SavedModel 加载,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58575586/
为了让我的代码几乎完全用 Jquery 编写,我想用 Jquery 重写 AJAX 调用。 这是从网页到 Tomcat servlet 的调用。 我目前情况的类似代码: var http = new
我想使用 JNI 从 Java 调用 C 函数。在 C 函数中,我想创建一个 JVM 并调用一些 Java 对象。当我尝试创建 JVM 时,JNI_CreateJavaVM 返回 -1。 所以,我想知
环顾四周,我发现从 HTML 调用 Javascript 函数的最佳方法是将函数本身放在 HTML 中,而不是外部 Javascript 文件。所以我一直在网上四处寻找,找到了一些简短的教程,我可以根
我有这个组件: import {Component} from 'angular2/core'; import {UserServices} from '../services/UserService
我正在尝试用 C 实现一个简单的 OpenSSL 客户端/服务器模型,并且对 BIO_* 调用的使用感到好奇,与原始 SSL_* 调用相比,它允许一些不错的功能。 我对此比较陌生,所以我可能会完全错误
我正在处理有关异步调用的难题: 一个 JQuery 函数在用户点击时执行,然后调用一个 php 文件来检查用户输入是否与数据库中已有的信息重叠。如果是这样,则应提示用户确认是否要继续或取消,如果他单击
我有以下类(class)。 public Task { public static Task getInstance(String taskName) { return new
嘿,我正在构建一个小游戏,我正在通过制作一个数字 vector 来创建关卡,该数字 vector 通过枚举与 1-4 种颜色相关联。问题是循环(在 Simon::loadChallenge 中)我将颜
我有一个java spring boot api(数据接收器),客户端调用它来保存一些数据。一旦我完成了数据的持久化,我想进行另一个 api 调用(应该处理持久化的数据 - 数据聚合器),它应该自行异
首先,这涉及桌面应用程序而不是 ASP .Net 应用程序。 我已经为我的项目添加了一个 Web 引用,并构建了各种数据对象,例如 PayerInfo、Address 和 CreditCard。但问题
我如何告诉 FAKE 编译 .fs文件使用 fsc ? 解释如何传递参数的奖励积分,如 -a和 -target:dll . 编辑:我应该澄清一下,我正在尝试在没有 MSBuild/xbuild/.sl
我使用下划线模板配置了一个简单的主干模型和 View 。两个单独的 API 使用完全相同的配置。 API 1 按预期工作。 要重现该问题,请注释掉 API 1 的 URL,并取消注释 API 2 的
我不确定什么是更好的做法或更现实的做法。我希望从头开始创建目录系统,但不确定最佳方法是什么。 我想我在需要显示信息时使用对象,例如 info.php?id=100。有这样的代码用于显示 Game.cl
from datetime import timedelta class A: def __abs__(self): return -self class B1(A):
我在操作此生命游戏示例代码中的数组时遇到问题。 情况: “生命游戏”是约翰·康威发明的一种细胞自动化技术。它由一个细胞网格组成,这些细胞可以根据数学规则生存/死亡/繁殖。该网格中的活细胞和死细胞通过
如果我像这样调用 read() 来读取文件: unsigned char buf[512]; memset(buf, 0, sizeof(unsigned char) * 512); int fd;
我用 C 编写了一个简单的服务器,并希望调用它的功能与调用其他 C 守护程序的功能相同(例如使用 ./ftpd start 调用它并使用 ./ftpd stop 关闭该实例)。显然我遇到的问题是我不知
在 dos 中,当我粘贴此命令时它会起作用: "C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" https://google.
在 dos 中,当我粘贴此命令时它会起作用: "C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" https://google.
我希望能够从 cmd 在我的 Windows 10 计算机上调用 python3。 我已重新安装 Python3.7 以确保选择“添加到路径”选项,但仍无法调用 python3 并使 CMD 启动 P
我是一名优秀的程序员,十分优秀!