- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我写了下面的代码,它假设加载一个模型,然后对来自 MNIST 数据集的元素进行预测运行。在执行开始时,代码工作正常,我得到了我想要的预测,但突然间我确实收到了以下错误,我不确定这是否与 .predict arguments
有关。 .
我的代码:
# importing libraries
import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays
import gzip,sys,pickle # dataset manipulation library
# importing MNIST dataset
f = gzip.open('mnist.pkl.gz', 'rb')
if sys.version_info < (3,):
data = pickle.load(f)
else:
data = pickle.load(f, encoding='bytes')
f.close()
(x_train, _), (x_test, _) = data
print("-----------------------dataset ready-----------------------")
# using an expample from x_test / to remove later
# preprocessing
x_test = tf.keras.utils.normalize(x_test, axis=1) # scales data between 0 and 1
# importing model
new_model = tf.keras.models.load_model('epic_num_reader.model')
print("-----------------------model ready-----------------------")
# getting prediction
predictions = new_model.predict(x_test[0])
import numpy as np
print("-----------------------predection ready-----------------------")
print(np.argmax(predictions))
-----------------------dataset ready-----------------------
2019-10-27 00:36:58.767359: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
-----------------------model ready-----------------------
Traceback (most recent call last):
File "c:\Users\lotfi\Desktop\DigitsDetector\main1.py", line 24, in <module>
predictions = new_model.predict(x_test[0])
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 909, in predict
use_multiprocessing=use_multiprocessing)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 462, in predict
steps=steps, callbacks=callbacks, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 444, in _model_iteration
total_epochs=1)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 123, in run_one_epoch
batch_outs = execution_function(iterator)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 86, in execution_function
distributed_function(input_fn))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
result = self._call(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 503, in _call
self._initialize(args, kwds, add_initializers_to=initializer_map)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 408, in _initialize
*args, **kwds))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 1848, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2150, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2041, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 915, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 358, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 73, in distributed_function
per_replica_function, args=(model, x, y, sample_weights))
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 760, in experimental_run_v2
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 1787, in call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py", line 2132, in _call_for_each_replica
return fn(*args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\autograph\impl\api.py", line 292, in wrapper
return func(*args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 162, in _predict_on_batch
return predict_on_batch(model, x)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 370, in predict_on_batch
return model(inputs) # pylint: disable=not-callable
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 847, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\sequential.py", line 270, in call
outputs = layer(inputs, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 847, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\keras\saving\saved_model\utils.py", line 57, in return_outputs_and_add_losses
outputs, losses = fn(inputs, *args, **kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
result = self._call(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 494, in _call
results = self._stateful_fn(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 1822, in __call__
graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2150, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\function.py", line 2041, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 915, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 358, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "C:\Users\lotfi\Anaconda3\envs\tf\lib\site-packages\tensorflow_core\python\saved_model\function_deserialization.py", line 262, in restored_function_body
"\n\n".join(signature_descriptions)))
ValueError: Could not find matching function to call loaded from the SavedModel. Got:
Positional arguments (1 total):
* Tensor("inputs:0", shape=(None, 28), dtype=float32)
Keyword arguments: {}
Expected these arguments to match one of the following 1 option(s):
Option 1:
Positional arguments (1 total):
* TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs')
Keyword arguments: {}
最佳答案
注意:我认为您的问题出在预测模型部分。在该部分中,您使用了与预训练模型数组维度不匹配的 x_test[0]。您必须使用 x_test 而不是 x_test[0]。 enter image description here
#Use This Code TO Solve Your Problem
import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays
mnist = tf.keras.datasets.mnist # mnist is a dataset of 28x28 images of handwritten digits and their labels
(x_train, y_train),(x_test, y_test) = mnist.load_data() # unpacks images to x_train/x_test and labels to y_train/y_test
x_train = tf.keras.utils.normalize(x_train, axis=1) # scales data between 0 and 1
x_test = tf.keras.utils.normalize(x_test, axis=1) # scales data between 0 and 1
model = tf.keras.models.Sequential() # a basic feed-forward model
model.add(tf.keras.layers.Flatten()) # takes our 28x28 and makes it 1x784
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) # our output layer. 10 units for 10 classes. Softmax for probability distribution
model.compile(optimizer='adam', # Good default optimizer to start with
loss='sparse_categorical_crossentropy', # how will we calculate our "error." Neural network aims to minimize loss.
metrics=['accuracy']) # what to track
model.fit(x_train, y_train, epochs=3) # train the model
val_loss, val_acc = model.evaluate(x_test, y_test) # evaluate the out of sample data with model
print(val_loss) # model's loss (error)
print(val_acc) # model's accuracy
--------------------------Save Model----------------------------------------
model.save('epic_num_reader.model') # save the model
--------------------------Load Model----------------------------------------
new_model = tf.keras.models.load_model('epic_num_reader.model') # Load the model
--------------------------Predict Model-------------------------------------
predictions = new_model.predict(x_test)
print(predictions)
--------------------------visualize Prediction------------------------------
plt.imshow(x_test[0],cmap=plt.cm.binary)
plt.show()
-------------------------- Validated Prediction-----------------------------
import numpy as np
print(np.argmax(predictions[0]))
关于python - 找不到匹配的函数来调用从 SavedModel 加载,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58575586/
我想要显示正在加载的 .gif,直到所有内容都已加载,包括嵌入的 iframe。但是,目前加载 gif 会在除 iframe 之外的所有内容都已加载后消失。我怎样才能让它等到 iframe 也加载完毕
首先,这是我第一次接触 Angular。 我想要实现的是,我有一个通知列表,我必须以某种方式限制 limitTo,因此元素被限制为三个,在我单击按钮后,其余的应该加载。 我不明白该怎么做: 设置“ V
我正在尝试在我的设备上运行这个非常简单的应用程序(使用 map API V2),并且出于某种原因尝试使用 MapView 时: 使用 java 文件: public class MainMap e
我正在使用 Python 2.6、Excel 2007 Professional 和最新版本的 PyXLL。在 PyXLL 中加载具有 import scipy 抛出异常,模块未加载。有没有人能够在
我想做这个: 创建并打包原始游戏。然后我想根据原始游戏中的蓝图创建具有新网格/声音/动画和蓝图的其他 PAK 文件。原始游戏不应该知道有关其他网格/动画/等的任何信息。因此,我需要在原始游戏中使用 A
**摘要:**在java项目中经常会使用到配置文件,这里就介绍几种加载配置文件的方法。 本文分享自华为云社区《【Java】读取/加载 properties配置文件的几种方法》,作者:Copy工程师。
在 Groovy 脚本中是否可以执行条件导入语句? if (test){ import this.package.class } else { import that.package.
我正在使用 NVidia 视觉分析器(来自 CUDA 5.0 beta 版本的基于 eclipse 的版本)和 Fermi 板,我不了解其中两个性能指标: 全局加载/存储效率表示实际内存事务数与请求事
有没有办法在通过 routeProvider 加载特定 View 时清除 Angular JS 存储的历史记录? ? 我正在使用 Angular 创建一个公共(public)安装,并且历史会积累很多,
使用 Xcode 4.2,在我的应用程序中, View 加载由 segue 事件触发。 在 View Controller 中首先调用什么方法? -(void) viewWillAppear:(BOO
我在某些Django模型中使用JSONField,并希望将此数据从Oracle迁移到Postgres。 到目前为止,当使用Django的dumpdata和loaddata命令时,我仍然没有运气来保持J
创建 Nib 时,我需要创建两种类型:WindowNib 或 ViewNib。我看到的区别是,窗口 Nib 有一个窗口和一个 View 。 如何将 View Nib 加载到另一个窗口中?我是否必须创建
我想将多个env.variables转换为静态结构。 我可以手动进行: Env { is_development: env::var("IS_DEVELOPMENT")
正如我从一个测试用例中看到的:https://godbolt.org/z/K477q1 生成的程序集加载/存储原子松弛与普通变量相同:ldr 和 str 那么,宽松的原子变量和普通变量之间有什么区别吗
我有一个重定向到外部网站的按钮/链接,但是外部网站需要一些时间来加载。所以我想添加一个加载屏幕,以便外部页面在显示之前完全加载。我无法控制外部网站,并且外部网站具有同源策略,因此我无法在 iFrame
我正在尝试为我的应用程序开发一个Dockerfile,该文件在初始化后加载大量环境变量。不知何故,当我稍后执行以下命令时,这些变量是不可用的: docker exec -it container_na
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我刚刚遇到一个问题,我有一个带有一些不同选项的选择标签。 现在我想检查用户选择了哪些选项。 然后我想将一个新的 html 文件加载到该网站(取决于用户选中的选项)宽度 javascript,我该怎么做
我知道两种保存/加载应用程序设置的方法: 使用PersistentStore 使用文件系统(存储,因为 SDCard 是可选的) 我想知道您使用应用程序设置的做法是什么? 使用 PersistentS
我开始使用 Vulkan 时偶然发现了我的第一个问题。尝试创建调试报告回调时(验证层和调试扩展在我的英特尔 hd vulkan 驱动程序上可用,至少它是这么说的),它没有告诉我 vkCreateDeb
我是一名优秀的程序员,十分优秀!