- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试结合 CNN 和 LSTM 进行图像分类。
我尝试了以下代码,但出现错误。我有 4 个类(class),我想对其进行培训和测试。
以下是代码:
from keras.models import Sequential
from keras.layers import LSTM,Conv2D,MaxPooling2D,Dense,Dropout,Input,Bidirectional,Softmax,TimeDistributed
input_shape = (200,300,3)
Model = Sequential()
Model.add(TimeDistributed(Conv2D(
filters=16, kernel_size=(12, 16), activation='relu', input_shape=input_shape)))
Model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2),strides=2)))
Model.add(TimeDistributed(Conv2D(
filters=24, kernel_size=(8, 12), activation='relu')))
Model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2),strides=2)))
Model.add(TimeDistributed(Conv2D(
filters=32, kernel_size=(5, 7), activation='relu')))
Model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2),strides=2)))
Model.add(Bidirectional(LSTM((10),return_sequences=True)))
Model.add(Dense(64,activation='relu'))
Model.add(Dropout(0.5))
Model.add(Softmax(4))
Model.compile(loss='sparse_categorical_crossentropy',optimizer='adam')
Model.build(input_shape)
我收到以下错误:
"Input tensor must be of rank 3, 4 or 5 but was {}.".format(n + 2))ValueError: Input tensor must be of rank 3, 4 or 5 but was 2.
最佳答案
我在代码中发现了很多问题:
Conv2D
没问题,TimeDistributed
不需要 return_sequences=False
在最后一个 LSTM 单元中 categorical_crossentropy
而不是 sparse_categorical_crossentropy
因为您的目标是单热编码 def ReshapeLayer(x):
shape = x.shape
# 1 possibility: H,W*channel
reshape = Reshape((shape[1],shape[2]*shape[3]))(x)
# 2 possibility: W,H*channel
# transpose = Permute((2,1,3))(x)
# reshape = Reshape((shape[1],shape[2]*shape[3]))(transpose)
return reshape
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=(12, 16), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
model.add(Conv2D(filters=24, kernel_size=(8, 12), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
model.add(Conv2D(filters=32, kernel_size=(5, 7), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
model.add(Lambda(ReshapeLayer)) # <========== pass from 4D to 3D
model.add(Bidirectional(LSTM(10, activation='relu', return_sequences=False)))
model.add(Dense(nclasses,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam')
model.summary()
here the running notebook
关于python - 结合CNN和双向LSTM,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64150587/
R-CNN、fast R-CNN、faster R-CNN 和 YOLO 在以下方面有什么区别: (1) 同一图像集上的精度 (2) 给定 SAME IMAGE SIZE,运行时间 (3) 支持安卓移
我试图比较 CNN 模型和组合 CNN-SVM 模型进行分类的准确性结果。然而我发现 CNN 模型比 CNN-SVM 组合模型具有更好的准确性。这是正确的还是可能发生? 最佳答案 这取决于很多因素,但
我知道这可能是一个愚蠢的问题,但我对机器学习和人工神经网络有点陌生。 深度卷积神经网络和密集卷积神经网络有什么区别吗? 提前致谢! 最佳答案 密集 CNN 是深度 CNN 的一种,其中每一层都与比自身
我正在使用预训练的 CNN 从图片中提取特征。使用这些特征作为新 CNN/NN 的输入有意义吗?以前做过吗?我很高兴得到答复。 最佳答案 这称为微调。这是非常常用的。通常,我们会删除 VGG 或类似网
与 caffe 合作几个月后,我已经能够成功地训练我自己的模型。例如,比我自己的模型更进一步,我已经能够用 1000 个类来训练 ImageNet。 现在在我的项目中,我试图提取我感兴趣的区域。之后我
我正在使用下面的 LeNet 架构来训练我的图像分类模型,我注意到每次迭代都不会提高训练和验证的准确性。这方面的任何专家都可以解释可能出了什么问题吗? 训练样本 - 属于 2 个类别的 110 张图像
我使用剩余连接实现了以下 CNN,用于在 CIFAR10 上对 10 个类进行分类: class ConvolutionalNetwork(nn.Module): def __init__(se
我有一组二维输入数组 m x n即 A,B,C我必须预测两个二维输出数组,即 d,e我确实有预期值。如果您愿意,您可以将输入/输出视为灰色图像。 由于空间信息是相关的(这些实际上是 2D 物理域)我想
我正在开发一个交通跟踪系统,该系统可以分析已经收集的视频。我正在使用opencv,线程,pytorch和dectron2。为了加快从opencv抓帧的速度,我决定使用Thread,该线程运行一个循环,
我正在解决一个问题,需要我构建一个深度学习模型,该模型必须基于某些输入图像输出另一个图像。值得注意的是,这两个图像在概念上是相关的,但它们没有相同的尺寸。 起初我认为具有最终密集层(其参数是输出图像的
我正在制作一个卷积网络来预测 3 类图像:猫、狗和人。我训练了又训练它,但是当我传递猫图像来预测时,它总是给出错误的输出。我尝试了其他猫的照片,但结果没有改变。对于人和狗来说没有问题,只是对于猫来说。
我接到一项任务,要实现一个卷积神经网络,该网络可以评估 MNIST dataset 中找到的手写数字。网络架构如下所示: 我已经实现了一个与架构相匹配的 CNN,不幸的是它的准确率只有 10% 左右。
我正在尝试在 Keras 中重新创建 CNN 来对点云数据进行分类。 CNN 在 this 中描述。纸。 网络设计 这是我当前的实现: inputs = Input(shape=(None, 3))
我想为有 300 个类的数据集设计 CNN。我已经用以下模型对两个类(class)进行了测试。它具有良好的准确性。 model = Sequential([ Conv2D(16, 3, padding
我成功训练了 CNN 模型,但是当我向模型提供图像以使其预测标签时,出现错误。 这是我的模型(我正在使用 saver.restore 恢复它)... # load dataset mnist = in
我恢复了用于人脸检测的预训练模型,该模型一次获取单个图像并返回边界框。如果这些图像具有不同的尺寸,如何才能获取一批图像? 最佳答案 您可以使用tf.image.resize_images方法来实现这一
我有大约 8200 张图像用于人脸检测任务。其中 4800 个包含人脸。其他 3400 张图像包含 3D 人脸面具(由橡胶/ latex 制成)、卡通人脸、猴子脸的图像。我想检测给定的图像是否包含真实
我有一组合成噪声图像。示例如下: 我还有它们相应的干净文本图像作为我的地面实况数据。下面的例子: 两个图像的尺寸为4918 x 5856。它的大小是否适合训练我的执行图像去噪的卷积神经网络?如果没有,
大家好! 由于我正在尝试制作一个将灰度图像转换为 RGB 图像的全卷积神经网络,所以我想知道是否可以在不同大小的图像(不同的像素和比率)上训练和测试模型。通常你只会下采样或上采样,这是我不想做的。我听
我正在研究 CNN 特征的早期和晚期融合。我从 CNN 的多层中获取了特征。对于早期融合,我捕获了三个不同层的特征,然后水平连接它们 F= [F1' F2' F3']; 对于后期融合,我正在阅读此 p
我是一名优秀的程序员,十分优秀!