- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想将一个sf
对象转换成一个未标记的ppp
。 (根据 this post,现在支持从 sf
到 ppp
的转换。)
library(sf)
#Initialise sf object
pp <- structure(list(X = c(959207.877070254, 959660.734838225, 951483.685462513, 951527.767554883, 958310.673042469, 950492.05212104, 959660.734838225, 959207.877070254, 960500.020456073, 959660.734838225), Y = c(1944457.42827898, 1955543.76027363, 1939982.16629396, 1940216.55143212, 1954704.68186897, 1951434.68524296, 1955543.76027363, 1944457.42827898, 1955292.64874361, 1955543.76027363), geometry = structure(list(structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(951483.685462513, 1939982.16629396), class = c("XY", "POINT", "sfg")), structure(c(951527.767554883, 1940216.55143212), class = c("XY", "POINT", "sfg")), structure(c(958310.673042469, 1954704.68186897), class = c("XY", "POINT", "sfg")), structure(c(950492.05212104, 1951434.68524296), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(960500.020456073, 1955292.64874361), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg"))), class = c("sfc_POINT", "sfc"), precision = 0, bbox = structure(c(xmin = 950492.05212104, ymin = 1939982.16629396, xmax = 960500.020456073, ymax = 1955543.76027363 ), class = "bbox"), crs = structure(list(input = "EPSG:5179", wkt = "PROJCRS[\"Korea 2000 / Unified CS\",\n BASEGEOGCRS[\"Korea 2000\",\n DATUM[\"Geocentric datum of Korea\",\n ELLIPSOID[\"GRS 1980\",6378137,298.257222101,\n LENGTHUNIT[\"metre\",1]]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4737]],\n CONVERSION[\"Korea Unified Belt\",\n METHOD[\"Transverse Mercator\",\n ID[\"EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",38,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8801]],\n PARAMETER[\"Longitude of natural origin\",127.5,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor at natural origin\",0.9996,\n SCALEUNIT[\"unity\",1],\n ID[\"EPSG\",8805]],\n PARAMETER[\"False easting\",1000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",2000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"northing (X)\",north,\n ORDER[1],\n LENGTHUNIT[\"metre\",1]],\n AXIS[\"easting (Y)\",east,\n ORDER[2],\n LENGTHUNIT[\"metre\",1]],\n USAGE[\n SCOPE[\"unknown\"],\n AREA[\"Korea, Republic of (South Korea)\"],\n BBOX[28.6,122.71,40.27,134.28]],\n ID[\"EPSG\",5179]]"), class = "crs"), n_empty = 0L)), row.names = c(4177L, 15721L, 21365L, 21973L, 24836L, 59359L, 66313L, 70379L, 83277L, 90828L), class = c("sf", "data.frame"), sf_column = "geometry", agr = structure(c(X = NA_integer_, Y = NA_integer_), .Label = c("constant", "aggregate", "identity" ), class = "factor"))
library(spatstat)
#Convert to ppp format: method 1
pp1 <- as.ppp(pp)
#Warning message:
#In as.ppp.sf(pp) : only first attribute column is used for marks
pp1 <- unmark(pp1)
#Convert to ppp format: method 2
pp2 <- as.ppp(st_coordinates(pp), st_convex_hull(st_union(pp)))
#Warning message:
#data contain duplicated points
identical(pp1, pp2)
[1] FALSE
第一种方法需要标记,但我无法找到如何关闭它(指定 marks=NULL
不起作用)。之后我删除了标记,但这是一种解决方法。
考虑到警告,第二种方法可能是错误的,尽管我基于 this solution 。 2 个输出不相同。
这些方法是否正确?为什么方法 2 会产生重复的点?是否有更直接的转换方法,没有变通办法?
最佳答案
我不确定以下答案是否适用于每个版本的 spatstat
,但我认为如果你想生成一个未标记的 ppp
对象,你应该运行
# packages
suppressPackageStartupMessages({
library(sf)
library(spatstat)
})
# Initialise sf object
pp <- structure(list(X = c(959207.877070254, 959660.734838225, 951483.685462513, 951527.767554883, 958310.673042469, 950492.05212104, 959660.734838225, 959207.877070254, 960500.020456073, 959660.734838225), Y = c(1944457.42827898, 1955543.76027363, 1939982.16629396, 1940216.55143212, 1954704.68186897, 1951434.68524296, 1955543.76027363, 1944457.42827898, 1955292.64874361, 1955543.76027363), geometry = structure(list(structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(951483.685462513, 1939982.16629396), class = c("XY", "POINT", "sfg")), structure(c(951527.767554883, 1940216.55143212), class = c("XY", "POINT", "sfg")), structure(c(958310.673042469, 1954704.68186897), class = c("XY", "POINT", "sfg")), structure(c(950492.05212104, 1951434.68524296), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(960500.020456073, 1955292.64874361), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg"))), class = c("sfc_POINT", "sfc"), precision = 0, bbox = structure(c(xmin = 950492.05212104, ymin = 1939982.16629396, xmax = 960500.020456073, ymax = 1955543.76027363 ), class = "bbox"), crs = structure(list(input = "EPSG:5179", wkt = "PROJCRS[\"Korea 2000 / Unified CS\",\n BASEGEOGCRS[\"Korea 2000\",\n DATUM[\"Geocentric datum of Korea\",\n ELLIPSOID[\"GRS 1980\",6378137,298.257222101,\n LENGTHUNIT[\"metre\",1]]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4737]],\n CONVERSION[\"Korea Unified Belt\",\n METHOD[\"Transverse Mercator\",\n ID[\"EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",38,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8801]],\n PARAMETER[\"Longitude of natural origin\",127.5,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor at natural origin\",0.9996,\n SCALEUNIT[\"unity\",1],\n ID[\"EPSG\",8805]],\n PARAMETER[\"False easting\",1000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",2000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"northing (X)\",north,\n ORDER[1],\n LENGTHUNIT[\"metre\",1]],\n AXIS[\"easting (Y)\",east,\n ORDER[2],\n LENGTHUNIT[\"metre\",1]],\n USAGE[\n SCOPE[\"unknown\"],\n AREA[\"Korea, Republic of (South Korea)\"],\n BBOX[28.6,122.71,40.27,134.28]],\n ID[\"EPSG\",5179]]"), class = "crs"), n_empty = 0L)), row.names = c(4177L, 15721L, 21365L, 21973L, 24836L, 59359L, 66313L, 70379L, 83277L, 90828L), class = c("sf", "data.frame"), sf_column = "geometry", agr = structure(c(X = NA_integer_, Y = NA_integer_), .Label = c("constant", "aggregate", "identity" ), class = "factor"))
# Convert to ppp format: method 1
(pp1 <- as.ppp(st_geometry(pp)))
#> Planar point pattern: 10 points
#> window: rectangle = [950492.1, 960500] x [1939982.2, 1955543.8] units
由 reprex package (v0.3.0) 创建于 2021-03-01
您提供的两种方法并不等效,因为 sf
包中定义的 as.ppp.sfc
函数使用矩形 owin
对象:
# packages
suppressPackageStartupMessages({
library(sf)
library(spatstat)
})
#Initialise sf object
pp <- structure(list(X = c(959207.877070254, 959660.734838225, 951483.685462513, 951527.767554883, 958310.673042469, 950492.05212104, 959660.734838225, 959207.877070254, 960500.020456073, 959660.734838225), Y = c(1944457.42827898, 1955543.76027363, 1939982.16629396, 1940216.55143212, 1954704.68186897, 1951434.68524296, 1955543.76027363, 1944457.42827898, 1955292.64874361, 1955543.76027363), geometry = structure(list(structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(951483.685462513, 1939982.16629396), class = c("XY", "POINT", "sfg")), structure(c(951527.767554883, 1940216.55143212), class = c("XY", "POINT", "sfg")), structure(c(958310.673042469, 1954704.68186897), class = c("XY", "POINT", "sfg")), structure(c(950492.05212104, 1951434.68524296), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg")), structure(c(959207.877070254, 1944457.42827898), class = c("XY", "POINT", "sfg")), structure(c(960500.020456073, 1955292.64874361), class = c("XY", "POINT", "sfg")), structure(c(959660.734838225, 1955543.76027363), class = c("XY", "POINT", "sfg"))), class = c("sfc_POINT", "sfc"), precision = 0, bbox = structure(c(xmin = 950492.05212104, ymin = 1939982.16629396, xmax = 960500.020456073, ymax = 1955543.76027363 ), class = "bbox"), crs = structure(list(input = "EPSG:5179", wkt = "PROJCRS[\"Korea 2000 / Unified CS\",\n BASEGEOGCRS[\"Korea 2000\",\n DATUM[\"Geocentric datum of Korea\",\n ELLIPSOID[\"GRS 1980\",6378137,298.257222101,\n LENGTHUNIT[\"metre\",1]]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4737]],\n CONVERSION[\"Korea Unified Belt\",\n METHOD[\"Transverse Mercator\",\n ID[\"EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",38,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8801]],\n PARAMETER[\"Longitude of natural origin\",127.5,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor at natural origin\",0.9996,\n SCALEUNIT[\"unity\",1],\n ID[\"EPSG\",8805]],\n PARAMETER[\"False easting\",1000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",2000000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"northing (X)\",north,\n ORDER[1],\n LENGTHUNIT[\"metre\",1]],\n AXIS[\"easting (Y)\",east,\n ORDER[2],\n LENGTHUNIT[\"metre\",1]],\n USAGE[\n SCOPE[\"unknown\"],\n AREA[\"Korea, Republic of (South Korea)\"],\n BBOX[28.6,122.71,40.27,134.28]],\n ID[\"EPSG\",5179]]"), class = "crs"), n_empty = 0L)), row.names = c(4177L, 15721L, 21365L, 21973L, 24836L, 59359L, 66313L, 70379L, 83277L, 90828L), class = c("sf", "data.frame"), sf_column = "geometry", agr = structure(c(X = NA_integer_, Y = NA_integer_), .Label = c("constant", "aggregate", "identity" ), class = "factor"))
# Convert to ppp format: method 1
(pp1 <- as.ppp(st_geometry(pp)))
#> Planar point pattern: 10 points
#> window: rectangle = [950492.1, 960500] x [1939982.2, 1955543.8] units
# Method 2
(pp2 <- as.ppp(
X = st_coordinates(pp),
W = as.owin(st_bbox(pp))
))
#> Warning: data contain duplicated points
#> Planar point pattern: 10 points
#> window: rectangle = [950492.1, 960500] x [1939982.2, 1955543.8] units
identical(pp1, pp2)
#> [1] TRUE
此外,由于作者设置了 check = FALSE
,第一个方法没有返回任何警告消息。
anyDuplicated(pp1)
#> [1] TRUE
由 reprex package (v0.3.0) 创建于 2021-03-01
有关详细信息,请参阅 here。
关于r - 将 sf 转换为未标记的 ppp,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66418104/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!