- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我有以下数据框:
col1 | col2 | col3
a | toto | 1
a | toto | 2
a | toto | 45
a | toto | 789
a | toto | 456
b | titi | 4
b | titi | 8
以col1
为主键。
我想知道如何确定 col1
中的哪个键在数据帧中出现次数少于 5 次。
所以输出应该是:
col1 | col2 | col3
b | titi |
到目前为止,我想出了以下解决方案:
anc_ref_window = Window.partitionBy("col1")
df\
.withColumn("temp_one", lit(1)) \
.withColumn("count", sum(col("temp_one")).over(anc_ref_window)) \
.drop("temp_one") \
.filter(col("count") < 5) \
.drop("count") \
.show()
结果如下:
col1 | col2 | col3
b | titi | 4
b | titi | 8
1 - 这是解决问题的正确方法吗?
2 - 我怎样才能只获得预期的输出?对于我的 pyspark (2.1.0) 版本,似乎没有像 select distinct col1,col2
这样的机制,就像我通过 Impala 所做的那样(例如)。
编辑:
col3 中的输出值对我来说无关紧要。
最佳答案
另一种方法:
df_lessthan5 = df.groupBy(col("col1")).count() \
.filter(col("count") < 5) \
.drop(col("count"))
df_distinct = df.drop(col("col3")).distinct()
result = df_distinct.join(df_lessthan5, ['col1'], 'inner')
结果:
result.show()
+----+----+
|col1|col2|
+----+----+
| b|titi|
+----+----+
与窗口操作相比,性能明智:
如果您确定您的窗口列 (col1) 没有高度偏斜,那么它会稍微好一些或与此 GroupBy 解决方案相当。
但如果您的 col1
是高度倾斜的,那么它将无法正确并行化,并且 1 个任务必须完成所有主要操作。在这种情况下,您应该选择 groupBy + join
关于python - 如何计算 pyspark 数据框中某个键的出现次数 (2.1.0),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68303077/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!