- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 scipy 编写一个简单的低通滤波器,但我需要帮助定义参数。
我的时间序列数据中有350万条记录需要过滤,数据采样频率为1000hz。
我正在使用 scipy 库中的 signal.firwin 和 signal.lfilter。
我在下面的代码中选择的参数根本不过滤我的数据。取而代之的是,下面的代码只是生成一些图形上看起来与完全相同的数据,但时间相位失真将图形向右移动略小于 1000 个数据点(1 秒)。
在另一个软件程序中,通过图形用户界面命令运行低通冷杉滤波器产生的输出对于每 10 秒(10,000 个数据点)段具有相似的平均值,但标准偏差大大降低,因此我们基本上失去了这个特定的噪声数据文件并将其替换为保留平均值的内容,同时显示不受高频噪声污染的长期趋势。另一个软件的参数对话框包含一个复选框,允许您选择系数的数量,以便“根据样本大小和采样频率进行优化”。 (我在 1000 hz 下收集了 350 万个样本,但我想要一个使用这些输入作为变量的函数。)
*谁能告诉我如何调整下面的代码,以消除所有高于 0.05 hz 的频率? * 我希望在图形中看到平滑的波浪,而不仅仅是我现在从下面的代码中得到的相同图形的时间失真。
class FilterTheZ0():
def __init__(self,ZSmoothedPylab):
#------------------------------------------------------
# Set the order and cutoff of the filter
#------------------------------------------------------
self.n = 1000
self.ZSmoothedPylab=ZSmoothedPylab
self.l = len(ZSmoothedPylab)
self.x = arange(0,self.l)
self.cutoffFreq = 0.05
#------------------------------------------------------
# Run the filter
#------------------------------------------------------
self.RunLowPassFIR_Filter(self.ZSmoothedPylab, self.n, self.l
, self.x, self.cutoffFreq)
def RunLowPassFIR_Filter(self,data, order, l, x, cutoffFreq):
#------------------------------------------------------
# Set a to be the denominator coefficient vector
#------------------------------------------------------
a = 1
#----------------------------------------------------
# Create the low pass FIR filter
#----------------------------------------------------
b = signal.firwin(self.n, cutoff = self.cutoffFreq, window = "hamming")
#---------------------------------------------------
# Run the same data set through each of the various
# filters that were created above.
#---------------------------------------------------
response = signal.lfilter(b,a,data)
responsePylab=p.array(response)
#--------------------------------------------------
# Plot the input and the various outputs that are
# produced by running each of the various filters
# on the same inputs.
#--------------------------------------------------
plot(x[10000:20000],data[10000:20000])
plot(x[10000:20000],responsePylab[10000:20000])
show()
return
最佳答案
截止频率归一化为奈奎斯特频率,它是采样率的一半。因此,当 FS = 1000 和 FC = 0.05 时,您需要截止值 = 0.05/500 = 1e-4。
from scipy import signal
FS = 1000.0 # sampling rate
FC = 0.05/(0.5*FS) # cutoff frequency at 0.05 Hz
N = 1001 # number of filter taps
a = 1 # filter denominator
b = signal.firwin(N, cutoff=FC, window='hamming') # filter numerator
M = FS*60 # number of samples (60 seconds)
n = arange(M) # time index
x1 = cos(2*pi*n*0.025/FS) # signal at 0.025 Hz
x = x1 + 2*rand(M) # signal + noise
y = signal.lfilter(b, a, x) # filtered output
plot(n/FS, x); plot(n/FS, y, 'r') # output in red
grid()
关于numpy - 使用 scipy 的低通冷杉滤波器参数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4152457/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!