gpt4 book ai didi

r - 可视化复杂数据的更好方法

转载 作者:行者123 更新时间:2023-12-04 13:02:41 26 4
gpt4 key购买 nike

我正在使用以下数据使用 ggplot2 在 R 中创建绘图。

 Hour.of.day     Model  N Distance.travelled       sd        se        ci
1 0100 h300_fv30 60 3.6264709 5.078277 0.6556027 1.3118579
2 0100 h300_fv35 60 2.9746019 5.313252 0.6859379 1.3725586
3 0100 h300_fv40 60 3.0422525 3.950650 0.5100267 1.0205610
4 0200 h300_fv30 60 4.3323896 6.866003 0.8863972 1.7736767
5 0200 h300_fv35 60 3.5567420 6.259378 0.8080823 1.6169689
6 0200 h300_fv40 60 2.5232512 4.533234 0.5852380 1.1710585
7 0300 h300_fv30 60 3.1800537 5.303506 0.6846797 1.3700409
8 0300 h300_fv35 60 2.9281442 4.445953 0.5739700 1.1485113
9 0300 h300_fv40 60 2.5078045 4.058295 0.5239236 1.0483687
10 0400 h300_fv30 60 3.3408231 4.567161 0.5896180 1.1798229
11 0400 h300_fv35 60 2.8679676 5.396700 0.6967110 1.3941155
12 0400 h300_fv40 60 3.1615813 4.244155 0.5479180 1.0963815
13 0500 h300_fv30 60 3.8117851 6.970900 0.8999394 1.8007745
14 0500 h300_fv35 60 2.1130581 3.925906 0.5068323 1.0141691
15 0500 h300_fv40 60 3.6430531 4.905484 0.6332953 1.2672209
16 0600 h300_fv30 60 3.5234762 5.150027 0.6648657 1.3303931
17 0600 h300_fv35 60 2.0341804 3.192176 0.4121082 0.8246266
18 0600 h300_fv40 60 3.2838958 3.770624 0.4867855 0.9740555
19 0700 h300_fv30 60 3.8327926 6.521022 0.8418603 1.6845587
20 0700 h300_fv35 60 1.6933289 2.607322 0.3366039 0.6735428
21 0700 h300_fv40 60 2.3896956 3.435656 0.4435413 0.8875241
22 0800 h300_fv30 60 3.3077466 6.504371 0.8397107 1.6802573
23 0800 h300_fv35 60 1.4823307 3.556884 0.4591917 0.9188405
24 0800 h300_fv40 60 2.4161741 3.571444 0.4610715 0.9226019
25 0900 h300_fv30 60 2.1506438 2.893029 0.3734885 0.7473487
26 0900 h300_fv35 60 1.8821961 3.457929 0.4464167 0.8932778
27 0900 h300_fv40 60 1.7896335 2.714514 0.3504423 0.7012334
28 1000 h300_fv30 60 2.5107475 5.491835 0.7089929 1.4186914
29 1000 h300_fv35 60 0.9491365 2.061712 0.2661658 0.5325966
30 1000 h300_fv40 60 1.6678013 3.234033 0.4175119 0.8354393
31 1100 h300_fv30 60 1.8602186 3.365695 0.4345093 0.8694511
32 1100 h300_fv35 60 1.4385708 2.869765 0.3704851 0.7413389
33 1100 h300_fv40 60 1.1273899 2.010280 0.2595261 0.5193105
34 1200 h300_fv30 60 1.4870763 2.112841 0.2727667 0.5458048
35 1200 h300_fv35 60 2.5295481 4.740384 0.6119810 1.2245711
36 1200 h300_fv40 60 1.6551202 3.051420 0.3939366 0.7882653
37 1300 h300_fv30 60 2.8791490 4.925870 0.6359271 1.2724872
38 1300 h300_fv35 60 2.4731563 5.266690 0.6799268 1.3605303
39 1300 h300_fv40 60 4.5989133 8.394460 1.0837201 2.1685189
40 1400 h300_fv30 60 1.5050205 3.188480 0.4116310 0.8236717
41 1400 h300_fv35 60 1.7615688 3.064842 0.3956693 0.7917325
42 1400 h300_fv40 60 2.2766514 5.215937 0.6733746 1.3474194
43 1500 h300_fv30 60 1.9097882 2.770040 0.3576106 0.7155772
44 1500 h300_fv35 60 2.0109347 4.070014 0.5254365 1.0513961
45 1500 h300_fv40 60 1.6316881 4.119681 0.5318485 1.0642264
46 1600 h300_fv30 60 3.3246263 5.352698 0.6910304 1.3827486
47 1600 h300_fv35 60 2.0389703 3.781869 0.4882372 0.9769604
48 1600 h300_fv40 60 1.0204568 2.205685 0.2847527 0.5697888
49 1700 h300_fv30 60 3.6132519 5.467875 0.7058996 1.4125019
50 1700 h300_fv35 60 2.1139255 4.178283 0.5394140 1.0793648
51 1700 h300_fv40 60 1.5547818 3.411135 0.4403756 0.8811895
52 1800 h300_fv30 60 5.0552532 7.344069 0.9481152 1.8971742
53 1800 h300_fv35 60 2.1832792 3.824244 0.4937078 0.9879070
54 1800 h300_fv40 60 1.6532516 3.273697 0.4226325 0.8456856
55 1900 h300_fv30 60 5.6107731 6.891023 0.8896272 1.7801399
56 1900 h300_fv35 60 2.9822004 5.958244 0.7692060 1.5391777
57 1900 h300_fv40 60 2.7111394 3.798765 0.4904184 0.9813250
58 2000 h300_fv30 60 6.0438385 7.126952 0.9200855 1.8410868
59 2000 h300_fv35 60 3.9517888 6.462761 0.8343388 1.6695081
60 2000 h300_fv40 60 3.9508503 5.374253 0.6938130 1.3883167
61 2100 h300_fv30 60 4.2144712 5.648673 0.7292406 1.4592070
62 2100 h300_fv35 60 2.2205186 3.397391 0.4386013 0.8776392
63 2100 h300_fv40 60 3.9000010 5.881409 0.7592866 1.5193290
64 2200 h300_fv30 60 3.9478958 5.584154 0.7209112 1.4425401
65 2200 h300_fv35 60 3.1612149 4.788883 0.6182421 1.2370996
66 2200 h300_fv40 60 3.7812992 6.424478 0.8293965 1.6596186
67 2300 h300_fv30 61 3.3860628 5.176299 0.6627571 1.3257117
68 2300 h300_fv35 61 3.7427743 6.257596 0.8012031 1.6026448
69 2300 h300_fv40 61 3.6674335 4.945831 0.6332487 1.2666861
70 2400 h300_fv30 59 3.8745470 5.763821 0.7503856 1.5020600
71 2400 h300_fv35 59 3.1284346 5.016476 0.6530895 1.3073007
72 2400 h300_fv40 59 3.7563017 4.819053 0.6273872 1.2558520

绘图函数是
ggplot(my_data, aes(x=Hour.of.day, y=Distance.travelled, colour=Model)) + 
geom_errorbar(aes(ymin = Distance.travelled - ci, ymax = Distance.travelled + ci), width=.1, position=position_dodge(2)) +
geom_line(position=position_dodge(2)) +
geom_point(position=position_dodge(2)) +
scale_x_discrete(breaks=c("0600", "1200", "1800", "2400")) +
theme(axis.ticks = element_blank())

在生成的图中很难区分三个独立的模式。 enter image description here

有没有人对改进可视化的方法有任何建议,以便更好地区分三个独立的模式?例如,某种方法来强调平均点并将置信区间放在背景中?

最佳答案

使用线条和色带:

library(ggplot2)
ggplot(my_data, aes(x=Hour.of.day, y=Distance.travelled,
fill=Model)) +
theme_bw()+
geom_line(aes(colour=Model))+
geom_ribbon(aes(ymin = Distance.travelled - ci,
ymax = Distance.travelled + ci),alpha=0.4)+
scale_x_discrete(breaks=c("0600", "1200", "1800", "2400")) +
theme(axis.ticks = element_blank())
ggsave("ribbonplot.png",width=7,height=4)

enter image description here

如果您想更强烈地强调均值的模式,您可以使线条更宽 ( lwd ) 或色带更暗 ( alpha )。

关于r - 可视化复杂数据的更好方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20908578/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com