gpt4 book ai didi

R 3.3.2 : lme4 + lmerTest problems under Mac OS Sierra

转载 作者:行者123 更新时间:2023-12-04 12:52:00 25 4
gpt4 key购买 nike

在使用 lme4 和 lmerTest 时,我偶然发现了影响 R 3.3.2(和 .3 也是!)的 Mac OS 版本的问题。

lmerTest 产生错误:

Error in calculation of the Satterthwaite's approximation. The output of lme4 package is returned summary from lme4 is returned some computational error has occurred in lmerTest



问题不 出现 使用 MacOS 下的 R 3.2 和 Windows 下的任何 R 版本。但是,这不是安装问题,因为我在重新安装 R 后以及在另一台 Mac 上重现了该错误。

这是示例代码:
 library(lme4)

#' start of data creation

mydat <-
structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29,
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29), sex = c(1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), ROI = structure(c(4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("calf",
"DSCAT", "KM", "neck", "SSCAT", "VAT"), class = "factor"),
value = c(0.674,
0.561, 0.543, 0.563, 0.697, 0.608, 0.56, 0.448, 0.626, 0.515,
0.568, 0.528, 0.587, 0.532, 0.547, 0.514, 0.587, 0.572, 0.559,
0.569, 0.462, 0.531, 0.477, 0.582, 0.583, 0.569, 0.563, 0.576,
0.84, 0.638, 0.69, 0.707, 0.704, 0.627, 0.769, 0.637, 0.515,
0.669, 0.699, 0.626, 0.59, 0.639, 0.501, 0.632, 0.624, 0.641,
0.669, 0.656, 0.556, 0.569, 0.633, 0.608, 0.616, 0.664, 0.666,
0.669, 0.545, 0.514, 0.45, 0.585, 0.547, 0.572, 0.577, 0.458,
0.47, 0.537, 0.532, 0.455, 0.62, 0.501, 0.506, 0.44, 0.499, 0.577,
0.457, 0.481, 0.522, 0.516, 0.513, 0.559, 0.571, 0.515, 0.575,
0.521, 0.44, 0.637, 0.521, 0.634, 0.552, 0.581, 0.55, 0.553,
0.522, 0.634, 0.631, 0.512, 0.603, 0.593, 0.58, 0.442, 0.53,
0.463, 0.587, 0.538, 0.48, 0.557, 0.482, 0.53, 0.592, 0.445,
0.526, 0.45, 0.551, 0.51, 0.678, 0.64, 0.599, 0.589, 0.627, 0.621,
0.601, 0.526, 0.619, 0.599, 0.668, 0.615, 0.621, 0.561, 0.532,
0.56, 0.578, 0.686, 0.57, 0.457, 0.563, 0.61, 0.513, 0.638, 0.594,
0.777, 0.562, 0.663, 0.538, 0.471, 0.518, 0.47, 0.535, 0.644,
0.605, 0.474, 0.468, 0.563, 0.539, 0.47, 0.538, 0.453, 0.494,
0.576, 0.418, 0.609, 0.528, 0.453, 0.569, 0.484, 0.486, 0.558,
0.621, 0.465, 0.691, 0.398, 0.539, 0.574), Alter = c(45, 47,
51, 44, 35, 26, 60, 44, 42, 50, 42, 51, 57, 23, 26, 29, 29, 50,
45, 61, 61, 58, 32, 27, 49, 45, 64, 28, 45, 47, 51, 44, 35, 26,
60, 44, 50, 42, 51, 57, 23, 26, 29, 29, 50, 45, 61, 61, 58, 32,
27, 49, 27, 45, 64, 28, 45, 47, 51, 44, 35, 26, 60, 44, 42, 50,
42, 51, 57, 23, 26, 29, 29, 50, 45, 61, 61, 58, 32, 27, 49, 27,
45, 64, 28, 45, 47, 51, 44, 35, 26, 60, 44, 42, 50, 42, 51, 57,
23, 26, 29, 29, 50, 45, 61, 61, 58, 32, 27, 49, 27, 45, 64, 28,
45, 47, 51, 44, 35, 26, 60, 44, 42, 50, 42, 51, 57, 23, 26, 29,
29, 50, 45, 61, 61, 58, 32, 27, 49, 27, 45, 64, 28, 45, 47, 51,
44, 35, 26, 60, 44, 42, 50, 42, 51, 57, 23, 26, 29, 29, 50, 45,
61, 61, 58, 32, 27, 49, 27, 45, 64, 28),
BMI = c(29.7506923675537,
28.8, 28.8385677337646, 41.48, 27.7186069488525, 29.54, 38.06,
35.8453826904297, 35.57, 31.77, 31.75, 32.78, 30.5336246490479,
29.1074104309082, 36.4690246582031, 31.7769088745117, 31.5393238067627,
31.5596752166748, 27.593786239624, 30.8192825317383, 27.0799140930176,
31.481481552124, 29.0328979492188, 24.52, 29.4029197692871, 35.6112785339355,
28.2401905059814, 28.8979587554932, 29.7506923675537, 28.8, 28.8385677337646,
41.48, 27.7186069488525, 29.54, 38.06, 35.8453826904297, 31.77,
31.75, 32.78, 30.5336246490479, 29.1074104309082, 36.4690246582031,
31.7769088745117, 31.5393238067627, 31.5596752166748, 27.593786239624,
30.8192825317383, 27.0799140930176, 31.481481552124, 29.0328979492188,
24.52, 29.4029197692871, 23.0956573486328, 35.6112785339355,
28.2401905059814, 28.8979587554932, 29.7506923675537, 28.8, 28.8385677337646,
41.48, 27.7186069488525, 29.54, 38.06, 35.8453826904297, 35.57,
31.77, 31.75, 32.78, 30.5336246490479, 29.1074104309082, 36.4690246582031,
31.7769088745117, 31.5393238067627, 31.5596752166748, 27.593786239624,
30.8192825317383, 27.0799140930176, 31.481481552124, 29.0328979492188,
24.52, 29.4029197692871, 23.0956573486328, 35.6112785339355,
28.2401905059814, 28.8979587554932, 29.7506923675537, 28.8, 28.8385677337646,
41.48, 27.7186069488525, 29.54, 38.06, 35.8453826904297, 35.57,
31.77, 31.75, 32.78, 30.5336246490479, 29.1074104309082, 36.4690246582031,
31.7769088745117, 31.5393238067627, 31.5596752166748, 27.593786239624,
30.8192825317383, 27.0799140930176, 31.481481552124, 29.0328979492188,
24.52, 29.4029197692871, 23.0956573486328, 35.6112785339355,
28.2401905059814, 28.8979587554932, 29.7506923675537, 28.8, 28.8385677337646,
41.48, 27.7186069488525, 29.54, 38.06, 35.8453826904297, 35.57,
31.77, 31.75, 32.78, 30.5336246490479, 29.1074104309082, 36.4690246582031,
31.7769088745117, 31.5393238067627, 31.5596752166748, 27.593786239624,
30.8192825317383, 27.0799140930176, 31.481481552124, 29.0328979492188,
24.52, 29.4029197692871, 23.0956573486328, 35.6112785339355,
28.2401905059814, 28.8979587554932, 29.7506923675537, 28.8, 28.8385677337646,
41.48, 27.7186069488525, 29.54, 38.06, 35.8453826904297, 35.57,
31.77, 31.75, 32.78, 30.5336246490479, 29.1074104309082, 36.4690246582031,
31.7769088745117, 31.5393238067627, 31.5596752166748, 27.593786239624,
30.8192825317383, 27.0799140930176, 31.481481552124, 29.0328979492188,
24.52, 29.4029197692871, 23.0956573486328, 35.6112785339355,
28.2401905059814, 28.8979587554932)), .Names = c("ID", "sex",
"ROI", "value", "Alter", "BMI"), row.names = c(NA, -172L), class = c("tbl_df","tbl", "data.frame"))

#' end of data creation


library(lmerTest)
mod <- lmer(value~Alter+ROI+BMI+(1|ID),data=mydat,REML=F)
summary(mod)
sessionInfo()

系统信息如下:
R version 3.3.3 (2017-03-06)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.3

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] lmerTest_2.0-33 lme4_1.1-12 Matrix_1.2-8

loaded via a namespace (and not attached):
[1] Rcpp_0.12.9 Formula_1.2-1 knitr_1.15.1 magrittr_1.5 cluster_2.0.5 splines_3.3.3 MASS_7.3-45 munsell_0.4.3 [9] colorspace_1.3-2 lattice_0.20-34 minqa_1.2.4 stringr_1.1.0 plyr_1.8.4 tools_3.3.3 nnet_7.3-12 grid_3.3.3 [17] data.table_1.10.0 checkmate_1.8.2 htmlTable_1.8 gtable_0.2.0 nlme_3.1-131 latticeExtra_0.6-28 htmltools_0.3.5 digest_0.6.11 [25] survival_2.40-1 lazyeval_0.2.0 assertthat_0.1 tibble_1.2 gridExtra_2.2.1 RColorBrewer_1.1-2 nloptr_1.0.4 ggplot2_2.2.1 [33] base64enc_0.1-3 acepack_1.4.1 rpart_4.1-10 stringi_1.1.2 backports_1.0.4 scales_0.4.1 Hmisc_4.0-2 foreign_0.8-67

最佳答案

经过反复尝试,代码在R3.3.3下运行,虽然我的系统没有变化。我是在做梦吗?有点超自然……我很困惑。抱歉打扰了。

R version 3.3.3 (2017-03-06) Platform: x86_64-apple-darwin13.4.0 (64-bit) Running under: macOS Sierra 10.12.3

locale: [1] C

attached base packages: [1] stats graphics grDevices utils
datasets methods base

other attached packages: [1] lmerTest_2.0-33 lme4_1.1-12
Matrix_1.2-8

loaded via a namespace (and not attached): [1] Rcpp_0.12.9
nloptr_1.0.4 RColorBrewer_1.1-2 plyr_1.8.4
base64enc_0.1-3 tools_3.3.3 rpart_4.1-10
digest_0.6.12 [9] tibble_1.2 nlme_3.1-131
gtable_0.2.0 htmlTable_1.9 checkmate_1.8.2
lattice_0.20-34 gridExtra_2.2.1 stringr_1.2.0 [17] cluster_2.0.5 knitr_1.15.1 htmlwidgets_0.8 grid_3.3.3 nnet_7.3-12 data.table_1.10.0 survival_2.40-1
foreign_0.8-67 [25] latticeExtra_0.6-28 minqa_1.2.4
Formula_1.2-1 ggplot2_2.2.1 magrittr_1.5
Hmisc_4.0-2 scales_0.4.1 backports_1.0.5 [33] htmltools_0.3.5 MASS_7.3-45 splines_3.3.3
assertthat_0.1 colorspace_1.3-2 stringi_1.1.2
acepack_1.4.1 lazyeval_0.2.0 [41] munsell_0.4.3

关于R 3.3.2 : lme4 + lmerTest problems under Mac OS Sierra,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42705396/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com