- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
TL;DR: 基于 Haskell 代码及其下面的相关分析数据,我们可以得出哪些结论,让我们修改/改进它,以便我们可以缩小与用命令式语言(即 C++/Python/C# 但具体的语言并不重要)?
背景
我编写了以下代码作为对一个流行网站上的问题的回答,该网站包含许多编程和/或数学性质的问题。 (你可能听说过这个网站,它的名字被一些人发音为“oiler”,另一些人发音为“yoolurr”。)由于下面的代码是一个问题的解决方案,我有意避免提及该网站的任何名称或问题中的任何特定术语。也就是说,我说的是问题一百零三。
(事实上,我在该站点的论坛中看到了许多来自 Haskell 常驻向导的解决方案:P)
为什么我选择分析此代码?
这是第一个问题(在上述站点上),我遇到了 Haskell 代码与 C++/Python/C# 代码(当两者都使用类似算法时)之间的性能差异(以执行时间衡量)。事实上,对于所有问题(到目前为止;我已经完成了大约 100 个问题,但不是按顺序),优化的 Haskell 代码几乎与最快的 C++ 解决方案并驾齐驱,其他条件不变算法,当然。
但是,论坛中针对此特定问题的帖子表明,这些其他语言中的相同算法通常最多需要一两秒,最长需要 10-15 秒(假设启动参数相同;我忽略了非常幼稚的算法,需要 2-3 分钟+)。相比之下,下面的 Haskell 代码在我的(体面的)计算机上需要大约 50 秒(禁用分析;启用分析,需要大约 2 分钟,如下所示;注意:使用 -fllvm
编译时执行时间相同) .规范:i5 2.4GHz 笔记本电脑,8GB RAM。
为了以一种可以成为命令式语言的可行替代品的方式学习 Haskell,我解决这些问题的目标之一是学习编写代码,在可能的情况下,其性能与那些命令式语言相当.在这种情况下,我仍然认为我还没有解决这个问题(因为性能相差近 25 倍!)
到目前为止我做了什么?
除了简化代码本身的明显步骤(尽我所能)之外,我还执行了“Real World Haskell”中推荐的标准分析练习。
但是我很难得出结论来告诉我哪些部分需要修改。这就是我希望人们能够帮助提供一些指导的地方。
问题描述:
我会向您推荐上述网站上问题 103 的网站,但这里有一个简短的总结:目标是找到一个由七个数字组成的组,使得(该组的)任何两个不相交的子组满足以下两个性质(由于上述原因,我试图避免使用“设置”一词......):
value
子函数中的 41.6%,它确定要填充动态规划 (“DP”) 表的值,(ii) 29.1% 在 table
函数中,它生成 DP 表和 (iii) 12.4% 在 rule1
函数中,它检查生成的 DP 表以确保给定的总和只能以一种方式计算(即,从一个子组) . value
和 table
函数,在 rule1
函数上花费了更多时间,因为它是三个中唯一一个不构造数组或过滤大量元素的函数(它是实际上只执行 O(1) 查找并在 Int
类型之间进行比较,您认为这会相对较快)。所以这是一个潜在的问题领域。也就是说,value
函数不太可能驱动高堆分配 Pinned
的红色区域代表什么。 dynamic
函数具有“尖峰”内存分配是有道理的,因为每次 construct
函数生成满足前三个条件的元组时都会调用它,并且每次调用它都会创建一个相当大的 DP 数组。此外,我认为存储元组(由构造生成)的内存分配在程序过程中不会平坦。 ARR_WORDS
(根据 GHC 文档表示 ByteString 或未装箱的数组)表示 DP 数组构造的低级执行(在 table
函数中)。坚果我不是100%肯定。 FROZEN
和 STATIC
指针类别对应的是什么。 {-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_GHC -Wall #-}
import CorePrelude
import Data.Array
import Data.List
import Data.Bool.HT ((?:))
import Control.Monad (guard)
main = print (minimum construct)
cap = 55 :: Int
flr = 20 :: Int
step = 1 :: Int
--we enumerate tuples that are potentially valid and then
--filter for valid ones; we perform the most computationally
--expensive step (i.e., rule 1) at the very end
construct :: [[Int]]
construct = {-# SCC "construct" #-} do
a <- [flr..cap] --1st: we construct potentially valid tuples while applying a
b <- [a+step..cap] --constraint on the upper bound of any element as implied by rule 2
c <- [b+step..a+b-1]
d <- [c+step..a+b-1]
e <- [d+step..a+b-1]
f <- [e+step..a+b-1]
g <- [f+step..a+b-1]
guard (a + b + c + d - e - f - g > 0) --2nd: we screen for tuples that completely conform to rule 2
let nn = [g,f,e,d,c,b,a]
guard (sum nn < 285) --3rd: we screen for tuples of a certain size (a guess to speed things up)
guard (rule1 nn) --4th: we screen for tuples that conform to rule 1
return nn
rule1 :: [Int] -> Bool
rule1 nn = {-# SCC "rule1" #-}
null . filter ((>1) . snd) --confirm that there's only one subgroup that sums to any given sum
. filter ((length nn==) . snd . fst) --the last column us how many subgroups sum to a given sum
. assocs --run the dynamic programming algorithm and generate a table
$ dynamic nn
dynamic :: [Int] -> Array (Int,Int) Int
dynamic ns = {-# SCC "dynamic" #-} table
where
(len, maxSum) = (length &&& sum) ns
table = array ((0,0),(maxSum,len))
[ ((s,i),x) | s <- [0..maxSum], i <- [0..len], let x = value (s,i) ]
elements = listArray (0,len) (0:ns)
value (s,i)
| i == 0 || s == 0 = 0
| s == m = table ! (s,i-1) + 1
| s > m = s <= sum (take i ns) ?:
(table ! (s,i-1) + table ! ((s-m),i-1), 0)
| otherwise = 0
where
m = elements ! i
堆分配、垃圾收集和耗时的统计信息:
% ghc -O2 --make 103_specialsubset2.hs -rtsopts -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main ( 103_specialsubset2.hs, 103_specialsubset2.o )
Linking 103_specialsubset2 ...
% time ./103_specialsubset2.hs +RTS -p -sstderr
zsh: permission denied: ./103_specialsubset2.hs
./103_specialsubset2.hs +RTS -p -sstderr 0.00s user 0.00s system 86% cpu 0.002 total
% time ./103_specialsubset2 +RTS -p -sstderr
SOLUTION REDACTED
172,449,596,840 bytes allocated in the heap
21,738,677,624 bytes copied during GC
261,128 bytes maximum residency (74 sample(s))
55,464 bytes maximum slop
2 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 327548 colls, 0 par 27.34s 41.64s 0.0001s 0.0092s
Gen 1 74 colls, 0 par 0.02s 0.02s 0.0003s 0.0013s
INIT time 0.00s ( 0.01s elapsed)
MUT time 53.91s ( 70.60s elapsed)
GC time 27.35s ( 41.66s elapsed)
RP time 0.00s ( 0.00s elapsed)
PROF time 0.00s ( 0.00s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 81.26s (112.27s elapsed)
%GC time 33.7% (37.1% elapsed)
Alloc rate 3,199,123,974 bytes per MUT second
Productivity 66.3% of total user, 48.0% of total elapsed
./103_specialsubset2 +RTS -p -sstderr 81.26s user 30.90s system 99% cpu 1:52.29 total
每个成本中心花费的时间统计:
Wed Dec 17 23:21 2014 Time and Allocation Profiling Report (Final)
103_specialsubset2 +RTS -p -sstderr -RTS
total time = 15.56 secs (15565 ticks @ 1000 us, 1 processor)
total alloc = 118,221,354,488 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
dynamic.value Main 41.6 17.7
dynamic.table Main 29.1 37.8
construct Main 12.9 37.4
rule1 Main 12.4 7.0
dynamic.table.x Main 1.9 0.0
individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 55 0 0.0 0.0 100.0 100.0
main Main 111 0 0.0 0.0 0.0 0.0
CAF:main1 Main 108 0 0.0 0.0 0.0 0.0
main Main 110 1 0.0 0.0 0.0 0.0
CAF:main2 Main 107 0 0.0 0.0 0.0 0.0
main Main 112 0 0.0 0.0 0.0 0.0
CAF:main3 Main 106 0 0.0 0.0 0.0 0.0
main Main 113 0 0.0 0.0 0.0 0.0
CAF:construct Main 105 0 0.0 0.0 100.0 100.0
construct Main 114 1 0.6 0.0 100.0 100.0
construct Main 115 1 12.9 37.4 99.4 100.0
rule1 Main 123 282235 0.6 0.0 86.5 62.6
rule1 Main 124 282235 12.4 7.0 85.9 62.6
dynamic Main 125 282235 0.2 0.0 73.5 55.6
dynamic.elements Main 133 282235 0.3 0.1 0.3 0.1
dynamic.len Main 129 282235 0.0 0.0 0.0 0.0
dynamic.table Main 128 282235 29.1 37.8 72.9 55.5
dynamic.table.x Main 130 133204473 1.9 0.0 43.8 17.7
dynamic.value Main 131 133204473 41.6 17.7 41.9 17.7
dynamic.value.m Main 132 132640003 0.3 0.0 0.3 0.0
dynamic.maxSum Main 127 282235 0.0 0.0 0.0 0.0
dynamic.(...) Main 126 282235 0.1 0.0 0.1 0.0
dynamic Main 122 282235 0.0 0.0 0.0 0.0
construct.nn Main 121 12683926 0.0 0.0 0.0 0.0
CAF:main4 Main 102 0 0.0 0.0 0.0 0.0
construct Main 116 0 0.0 0.0 0.0 0.0
construct Main 117 0 0.0 0.0 0.0 0.0
CAF:cap Main 101 0 0.0 0.0 0.0 0.0
cap Main 119 1 0.0 0.0 0.0 0.0
CAF:flr Main 100 0 0.0 0.0 0.0 0.0
flr Main 118 1 0.0 0.0 0.0 0.0
CAF:step_r1dD Main 99 0 0.0 0.0 0.0 0.0
step Main 120 1 0.0 0.0 0.0 0.0
CAF GHC.IO.Handle.FD 96 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 93 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding 91 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 82 0 0.0 0.0 0.0 0.0
堆配置文件:
最佳答案
有很多可以说的。在这个答案中,我将仅评论 construct
中的嵌套列表推导式功能。
了解 construct
中发生的事情我们将隔离它并将其与您用命令式语言编写的嵌套循环版本进行比较。我们删除了 rule1
守卫只测试列表的生成。
-- List.hs -- using list comprehensions
import Control.Monad
cap = 55 :: Int
flr = 20 :: Int
step = 1 :: Int
construct :: [[Int]]
construct = do
a <- [flr..cap]
b <- [a+step..cap]
c <- [b+step..a+b-1]
d <- [c+step..a+b-1]
e <- [d+step..a+b-1]
f <- [e+step..a+b-1]
g <- [f+step..a+b-1]
guard (a + b + c + d - e - f - g > 0)
guard (a + b + c + d + e + f + g < 285)
return [g,f,e,d,c,b,a]
-- guard (rule1 nn)
main = do
forM_ construct print
-- Loops.hs -- using imperative looping
import Control.Monad
loop a b f = go a
where go i | i > b = return ()
| otherwise = do f i; go (i+1)
cap = 55 :: Int
flr = 20 :: Int
step = 1 :: Int
main =
loop flr cap $ \a ->
loop (a+step) cap $ \b ->
loop (b+step) (a+b-1) $ \c ->
loop (c+step) (a+b-1) $ \d ->
loop (d+step) (a+b-1) $ \e ->
loop (e+step) (a+b-1) $ \f ->
loop (f+step) (a+b-1) $ \g ->
if (a+b+c+d-e-f-g > 0) && (a+b+c+d+e+f+g < 285)
then print [g,f,e,d,c,b,a]
else return ()
ghc -O2 -rtsopts
编译的并使用
prog +RTS -s > out
运行.
Lists.hs Loops.hs
Heap allocation 44,913 MB 2,740 MB
Max. Residency 44,312 44,312
%GC 5.8 % 1.7 %
Total Time 9.48 secs 1.43 secs
关于haskell - 使用 GHC 的分析统计数据/图表来识别问题区域/提高 Haskell 代码的性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27541340/
我正在比较工作簿中的工作表。该工作簿有两张名为 PRE 和 POST 的工作表,每张工作表都有相同的 19 列。行数每天都不同,但特定一天的两张表的行数相同。该宏将 PRE 工作表中的每一行与 POS
我有一个对象数组,我一次循环遍历该数组一个对象,然后进行几次检查以查看该数组中的每个对象是否满足特定条件,如果该对象满足此条件,则复制一个属性将此对象放入数组中(该属性还包含另一个对象)。 for(v
我正在编写一个必须非常快的应用程序。我使用 Qt 5.5 和 Qt Creator,Qt 的 64 位 MSVC2013 编译版本。 我使用非常困倦的 CS 来分析我的应用程序,我看到占用最多独占时间
我有以下 CountDownTimer 在我的 Android 应用程序中不断运行。 CountDownTimer timer_status; timer_status = new CountDown
有一个优化问题,我必须调用随机森林回归器的预测函数数千次。 from sklearn.ensemble import RandomForestRegressor rfr = RandomForestR
我正在努力提高现有 Asp.Net Web 应用程序的数据访问层的性能。场景是。 它是一个基于 Web 的 Asp.Net 应用程序。 数据访问层使用 NHibernate 1.2 构建并作为 WCF
我在我的 Intel Edison 上运行 Debian,并尝试使用 ffmpeg 通过 USB 网络摄像头捕获视频。我正在使用的命令是: ffmpeg -f video4linux2 -i /dev
我有一个 For循环遍历整数 1 到 9 并简单地找到与该整数对应的最底部的条目(即 1,1,1,2,3,4,5 将找到第三个“1”条目)并插入一个空白行。我将数字与仅对应于此代码的应用程序的字符串“
我有一个带有非规范化架构(1 个表)的 postgresql 数据库,其中包含大约 400 万个条目。现在我有这个查询: SELECT count(*) AS Total, (SELECT c
在 Ltac 中实现复杂的策略时,有一些 Ltac 命令或策略调用我预计会失败以及预期失败(例如终止 repeat 或导致回溯)。这些故障通常在故障级别 0 时引发。 更高级别引发的故障“逃避”周
我正在尝试提高 ansible playbook 的性能。我有一个测试剧本如下: --- - name: Test hosts: localhost connection: local g
我正在使用 axios从 Azure 存储 Blob 下载文件 (~100MB)。 axios({ method: 'get', url: uri, onDownloadProgress:
我有一个 ClojureScript 程序,主要对集合执行数学计算。它是在惯用的、独立于主机的 Clojure 中开发的,因此很容易对其进行基准测试。令我惊讶的是(与答案对 Which is fast
我有一个程序必须在硬件允许的情况下尽快发出数千个 http 请求。在现实世界中,这些连接中的每一个都将连接到一个离散的服务器,但我已经编写了一个测试程序来帮助我模拟负载(希望如此)。 我的程序使用 A
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在计算 Clojure 中 3d 点云的边界框。点云表示为 Java 原始浮点数组,点云中的每个点都使用 4 个浮点存储,其中最后一个浮点未使用。像这样: [x0 y0 z0 u0 x1 y1
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我正在尝试使用rayshader 包制作图像。我很高兴能够使用如下代码创建一个 png 文件: library(ggplot2) library(rayshader) example_plot <-
更新 显然,jQuery 模板可以被编译,并且它有助于显示带有 if 语句 的模板的性能 here . 但是如图here ,预编译的 jQuery 模板对我的情况没有多大作用,因为我的模板不包含逻辑
我是编程新手。我有一个启用分页的 ScrollView ,其中包含许多页面(最多十个),并且在每个页面上都有一个自定义按钮。每个自定义按钮都有一个自定义图像。我在 Interface Builder
我是一名优秀的程序员,十分优秀!