gpt4 book ai didi

python - TypeError : Dimension value must be integer or None or have an __index__ method, 得到了 TensorShape([None, 1])

转载 作者:行者123 更新时间:2023-12-04 12:38:16 24 4
gpt4 key购买 nike

我正在尝试将我发现的使用 tflearn 的机器人教程转换为使用 keras。现在输出应该是模型预测的数据。但是,我得到了错误:

TypeError: Dimension value must be integer or None or have an __index__ method, got TensorShape([None, 1])

我的代码:

with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, lables, training, output = pickle.load(f)

except:
words = []
labels = []
docs_x = []
docs_y = []

for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])

if intent["tag"] not in labels:
labels.append(intent["tag"])

words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))

labels = sorted(labels)

training = []
output = []

out_empty = [0 for _ in range(len(labels))]

for x, doc in enumerate(docs_x):
bag = []

wrds = [stemmer.stem(w) for w in doc]

# marks if a word is present in the input (1=yes, 0=no)
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)

output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1

training.append(bag)
output.append(output_row)

training = numpy.array(training)
output = numpy.array(output)

with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)

tf.keras.backend.clear_session()

model = tf.keras.Sequential()

model.add(keras.layers.Dense(len(training[0])))
model.add(keras.layers.Dense(8))
model.add(keras.layers.Dense(8))
model.add(keras.layers.Dense(len(output[0]), activation="softmax"))

try:
keras.models.load_model("model.tflearn")
except:
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics="accuracy")
model.fit(training, output, epochs=1000, batch_size=8)
model.save("model.tflearn")

def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]

s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]

for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)

def chat():
print("Ready to chat! (type quit to stop)")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break

results = model.predict([bag_of_words(inp, words)])
print(results)

chat()

当使用 Debug模式时,它告诉我错误是行(chat() 内部):

结果 = model.predict([bag_of_words(inp, words)])

最佳答案

好的,所以这并不是真正 100% 回答您的问题,但我在使用 tf.2.2 和 tf.data.Dataset.from_generator 函数搜索相同问题时遇到了它。由于我找到了解决方案,该解决方案未记录在 tf 代码中,因此我想将其发布在这里以供社区将来查看。output_shapes 只需要与 output_types 相同数量的元素。 IE。说所有 output_types=tf.dtypes.float32 是不够的,而是每个形状元素都需要一个类型元素

关于python - TypeError : Dimension value must be integer or None or have an __index__ method, 得到了 TensorShape([None, 1]),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62205053/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com