作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
图 7.1,统计学习简介
我目前正在学习一本名为 Introduction to Statistical Learning with applications in R 的书,并将解决方案转换为 python 语言。
我无法获得如何获得置信区间并绘制它们,如上图(虚线)所示。我画了线。这是我的代码 -(我正在使用多项式回归与预测变量 - '年龄' 和响应 - '工资',度数为 4)
poly = PolynomialFeatures(4)
X = poly.fit_transform(data['age'].to_frame())
y = data['wage']
# X.shape
model = sm.OLS(y,X).fit()
print(model.summary())
# So, what we want here is not only the final line, but also the standart error related to the line
# TO find that we need to calcualte the predictions for some values of age
test_ages = np.linspace(data['age'].min(),data['age'].max(),100)
X_test = poly.transform(test_ages.reshape(-1,1))
pred = model.predict(X_test)
plt.figure(figsize = (12,8))
plt.scatter(data['age'],data['wage'],facecolors='none', edgecolors='darkgray')
plt.plot(test_ages,pred)
这里的数据是 R 中可用的 WAGE 数据。这是我得到的结果图 -
最佳答案
我使用 Bootstrap 来计算置信区间,为此我使用了一个自定义模块 -
import numpy as np
import pandas as pd
from tqdm import tqdm
class Bootstrap_ci:
def boot(self,X_data,y_data,R,test_data,model):
predictions = []
for i in tqdm(range(R)):
predictions.append(self.alpha(X_data,y_data,self.get_indices(X_data,200),test_data,model))
return np.percentile(predictions,2.5,axis = 0),np.percentile(predictions,97.5,axis = 0)
def alpha(self,X_data,y_data,index,test_data,model):
X = X_data.loc[index]
y = y_data.loc[index]
lr = model
lr.fit(pd.DataFrame(X),y)
return lr.predict(pd.DataFrame(test_data))
def get_indices(self,data,num_samples):
return np.random.choice(data.index, num_samples, replace=True)
上面的模块可以用作-
poly = PolynomialFeatures(4)
X = poly.fit_transform(data['age'].to_frame())
y = data['wage']
X_test = np.linspace(min(data['age']),max(data['age']),100)
X_test_poly = poly.transform(X_test.reshape(-1,1))
from bootstrap import Bootstrap_ci
bootstrap = Bootstrap_ci()
li,ui = bootstrap.boot(pd.DataFrame(X),y,1000,X_test_poly,LinearRegression())
这将为我们提供较低的置信区间和较高的置信区间。绘制图表 -
plt.scatter(data['age'],data['wage'],facecolors='none', edgecolors='darkgray')
plt.plot(X_test,pred,label = 'Fitted Line')
plt.plot(X_test,ui,linestyle = 'dashed',color = 'r',label = 'Confidence Intervals')
plt.plot(X_test,li,linestyle = 'dashed',color = 'r')
结果图是
关于matplotlib - 如何计算回归预测的置信区间?以及如何在 python 中绘制它,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63165775/
我是一名优秀的程序员,十分优秀!