gpt4 book ai didi

R Circlize "Detect some gaps are too large"

转载 作者:行者123 更新时间:2023-12-04 12:35:12 27 4
gpt4 key购买 nike

我想发布一个类似的图表 here但是,使用我们的数据时,我收到了此错误消息“检测一些间隙太大”。您是否认为是因为某些值与其他值相比非常小(例如:1 对 1812)?我对矩阵 2 中的数据进行了一些更改,方法是在 1 或 2 后添加几个零,并且可以正常工作。有没有办法解决这个范围的数据?我想使用我的真实数据(矩阵 1)绘制这个漂亮的图表。任何帮助深表感谢。

library(circlize)
#matrix 1
#level0 <- c(1, 8, 39, 14, 2)
#level1 <- c(1, 19, 153, 93, 1)
#level2 <- c(2, 19, 274, 46, 13)
#level3 <- c(0, 8, 152, 1812, 465)
#level4 <- c(0, 2, 1, 164, 226)

#matrix 2
#level0 <- c(100,8,39,14,200)
#level1 <- c(100,190, 153,93,100)
#level2 <- c(200,19,274,646,130)
#level3 <- c(200,800,152,1812,465)
#level4 <- c(200,200,100,164,226)

#build matrix 2
a <- list(c(100,8,39,14,200),c(100,19, 153,93,100), c(200,19,274,646,13), c(200,8,152,1812,465),c(200,200,100,164,226))
mat <- do.call(rbind, a)
#mat = matrix(sample(1:100, 25, replace = TRUE), 5, 5)
rownames(mat) = c("level 0", "level 1", "level 2", "level 3", "level 4")
colnames(mat) = c("Level0", "Level1", "Level2", "Level3", "Level4")
rn = rownames(mat)
cn = colnames(mat)

factors = c(rn, rev(cn))
factors = factor(factors, levels = factors)
col_sum = apply(mat, 2, sum)
row_sum = apply(mat, 1, sum)
xlim = cbind(rep(0, 10), c(row_sum, col_sum))

par(mar = c(1, 1, 1, 1))
circos.par(cell.padding = c(0, 0, 0, 0), clock.wise = FALSE, track.margin=c(0,0.1),
gap.degree = 4, start.degree =90)
circos.initialize(factors = factors, xlim = xlim
, sector.width = c(row_sum/sum(row_sum), col_sum/sum(col_sum)))
circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA,
# bg.col = c("red", "orange", "yellow", "green", "blue", rep("grey", 5)), track.height = 0.05,
bg.col = c(c("red", "orange", "yellow", "green", "blue"),
c("blue", "green", "yellow", "orange", "red")), track.height = 0.05,
panel.fun = function(x, y) {
sector.name = get.cell.meta.data("sector.index")
xlim = get.cell.meta.data("xlim")
circos.text(mean(xlim), 3, sector.name, adj = c(0.5, 0))
circos.axis(labels.cex=0.8, direction="outside", labels.away.percentage=0.5)
if(sector.name %in% rn) {
for(i in seq_len(ncol(mat))) {
circos.lines(rep(sum(mat[sector.name, seq_len(i)]), 2), c(0, 1),
col = "white")
}
} else if(sector.name %in% cn) {
for(i in seq_len(nrow(mat))) {
circos.lines(rep(sum(mat[ seq_len(i), sector.name]), 2), c(0, 1),
col = "white")
}
}
})
col = c("#FF000020", "#FFA50020", "#FFFF0020", "#00FF0020", "#0000FF20")
for(i in seq_len(nrow(mat))) {
for(j in seq_len(ncol(mat))) {
circos.link(rn[i], c(sum(mat[i, seq_len(j-1)]), sum(mat[i, seq_len(j)])),
cn[j], c(sum(mat[seq_len(i-1), j]), sum(mat[seq_len(i), j])),
col = col[i], border = "white")
}
}

最佳答案

所以我认为你的 df1 对象与我的原始代码有点不同。如果您将矩阵 mdf1 设置为这样...

m <- matrix(c(1, 8, 39, 14, 2, 
1, 19, 153, 93, 1,
2, 19, 274, 46, 13,
0, 8, 152, 1812, 465,
0, 2, 1, 164, 226), nrow=5, byrow=TRUE)
df1 <- data.frame(order=1:5, region=paste0("level",1:5),
rcol = c("red", "orange", "yellow", "green", "blue"),
lcol = c("#FF000020", "#FFA50020", "#FFFF0020", "#00FF0020", "#0000FF20"),
stringsAsFactors=FALSE)
df1$region <- factor(df1$region, levels=df1$region)
df1$xmin <- 0
df1$xmax <- rowSums(m)+colSums(m)
n <-nrow(df1)

dimnames(m) <- list(orig=df1$region,dest=df1$region)

你得到以下对象...
> df1
order region rcol lcol xmin xmax
1 1 level1 red #FF000020 0 68
2 2 level2 orange #FFA50020 0 323
3 3 level3 yellow #FFFF0020 0 973
4 4 level4 green #00FF0020 0 4566
5 5 level5 blue #0000FF20 0 1100
> addmargins(m)
dest
orig level1 level2 level3 level4 level5 Sum
level1 1 8 39 14 2 64
level2 1 19 153 93 1 267
level3 2 19 274 46 13 354
level4 0 8 152 1812 465 2437
level5 0 2 1 164 226 393
Sum 4 56 619 2129 707 3515

我更详细地解释了 working paperdf1 的用途。简而言之, df1 对象包含有关要绘制的扇区长度( xminxmax )以及外部圆形矩形的颜色 rcol 和色带链接颜色 lcol 的信息。你当然可以有相同的 lcolrcol ,...适应直到你得到你喜欢的调色板/样式(可能 lcol 的透明度稍低)。

然后,您可以继续使用与我在 migest package 中的演示文件中所拥有的代码非常相似的代码来获取绘图(我只更改了 circos.axis 轴参数和 df2 的子集)...
library(circlize)
library(plyr)
par(mar=rep(0,4))
circos.clear()

#basic circos graphic parameters
circos.par(cell.padding=c(0,0,0,0), track.margin=c(0,0.15), start.degree = 90, gap.degree =4)

#sector details
circos.initialize(factors = df1$region, xlim = cbind(df1$xmin, df1$xmax))

#plot sectors
circos.trackPlotRegion(ylim = c(0, 1), factors = df1$region, track.height=0.1,
#panel.fun for each sector
panel.fun = function(x, y) {
#select details of current sector
name = get.cell.meta.data("sector.index")
i = get.cell.meta.data("sector.numeric.index")
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")

#plot labels
circos.text(x=mean(xlim), y=2.2, labels=name, facing = "arc", cex=0.8)

#plot main sector
circos.rect(xleft=xlim[1], ybottom=ylim[1], xright=xlim[2], ytop=ylim[2], col = df1$rcol[i], border=df1$rcol[i])

#blank in part of main sector
#circos.rect(xleft=xlim[1], ybottom=ylim[1], xright=xlim[2]-rowSums(m)[i], ytop=ylim[1]+0.3, col = "white", border = "white")

#white line all the way around
#circos.rect(xleft=xlim[1], ybottom=0.3, xright=xlim[2], ytop=0.32, col = "white", border = "white")

#plot axis
circos.axis(labels.cex=0.6, major.at=seq(from=0,to=floor(df1$xmax)[i],by=500),
labels.away.percentage = 0.15)
})

##
##plot links
##
#add sum values to df1, marking the x-position of the first links out (sum1) and in (sum2). Updated for further links in loop below.
df1$sum1 <- colSums(m)
df1$sum2 <- numeric(n)

#create a data.frame of matrix sorted by element size, to allow largest plotted first
df2 <- cbind(as.data.frame(m),orig=rownames(m), stringsAsFactors=FALSE)
df2 <- reshape(df2, idvar="orig", varying=list(1:n), direction="long", timevar="dest", time=rownames(m), v.names = "m")
df2 <- arrange(df2,desc(m))

#loose non zero links
df2 <- subset(df2, m>0)

#plot links
for(k in 1:nrow(df2)){
#i,j reference of flow matrix
i<-match(df2$orig[k],df1$region)
j<-match(df2$dest[k],df1$region)

#plot link
circos.link(sector.index1=df1$region[i], point1=c(df1$sum1[i], df1$sum1[i] + abs(m[i, j])),
sector.index2=df1$region[j], point2=c(df1$sum2[j], df1$sum2[j] + abs(m[i, j])),
col = df1$lcol[i])

#update sum1 and sum2 for use when plotting the next link
df1$sum1[i] = df1$sum1[i] + abs(m[i, j])
df1$sum2[j] = df1$sum2[j] + abs(m[i, j])
}

这给出了这样的情节......

enter image description here

如果您想为绘图添加一些方向性,请取消注释 panel.fun 中添加白色矩形和边界线的两行。

关于R Circlize "Detect some gaps are too large",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23916451/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com