gpt4 book ai didi

r - 列表中数值向量的累积和

转载 作者:行者123 更新时间:2023-12-04 12:33:28 25 4
gpt4 key购买 nike

我希望有人能够帮助我解决这个问题。我有一个包含 48 个向量的列表对象,每个向量的长度为 2,000,000 个观察值。下面是创建相同结构的代码,每个向量只有 100,000 个项目:

mtx_sim <- matrix(data = runif(48 * 100000), ncol = 48, nrow = 100000)
mtx_list <- as.list(data.frame(mtx_sim))

我想对列表中向量的每一行求和。但是,有一个规定我只想对最后三十个向量求和。例如,列表中的第 35 个向量应添加到前面的 34 个向量中。另一方面,列表中的第四个向量应添加到前面的三个向量(向量编号三、二和一)。这是我的代码示例,它依赖于结合 rowSums 的 lapply 函数,它相对较慢:

start <- c(rep(1, times = 30), seq(2, 19, 1))
end <- seq(1,48,1)

system.time(xxx <- lapply(1:48, function(x)
rowSums(
matrix(
unlist(mtx_list[start[x]:end[x]]),
ncol = (end[x] - start[x] + 1)))
) )

user system elapsed
62.19 0.56 63.04

有没有人有优化代码的想法?

最佳答案

你在一个合理的算法中做了两件昂贵的事情:

  1. 您正在为每次迭代从您的列表中重新创建一个矩阵;这可能很慢
  2. 您正在反复重新计算整行总和,而实际上您只需要计算边际变化

这是一个替代方案。我们将原始矩阵重构一次,然后只添加边缘列。

fun_brodie <- function(mtx_list) {
mtx <- do.call(cbind, mtx_list)
base <- mtx[, 1]
res <- list(base)
for(i in seq(ncol(mtx))[-1])
res[[i]] <- res[[i - 1]] + mtx[, i] - if(i > 30) mtx[, i - 30] else 0
res
}
res <- fun_brodie(mtx_list)

确认等于:

all.equal(res, xxx)
# [1] TRUE

基准:

library(microbenchmark)
microbenchmark(times=3, fun_marat(mtx_list), fun_brodie(mtx_list), fun_op(mtx_list))

产生:

Unit: milliseconds
expr min lq mean
fun_marat(mtx_list) 1661.9135 1763.418 1800.3530
fun_brodie(mtx_list) 115.7877 116.061 153.6794
fun_op(mtx_list) 58059.7803 60388.303 62060.5557

感谢 Marat 指出我的解释错误。另外,请注意,为了使 fun_marat 可兼容,我添加了一个将列表绑定(bind)到数据框的步骤。

关于r - 列表中数值向量的累积和,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28859139/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com