- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想估计以下问题的威力。我有兴趣比较两个都遵循威 bool 分布的组。所以,A 组有两个参数(shape par = a1,scale par = b1),B 组有两个参数(a2, b2)。通过模拟来自感兴趣分布的随机变量(例如,假设不同的尺度和形状参数,即 a1=1.5*a2 和 b1=b2*0.5;或者组之间的差异仅在于形状或尺度参数),应用 log-似然比检验以检验是否 a1=a2 和 b1=b2(或例如 a1=a1,当我们知道 b1=b2 时),并估计检验的功效。
问题是完整模型的对数似然是什么,以及如何在 R 中对其进行编码
a) 有准确的数据,
b) 对于区间删失数据?
也就是说,对于简化模型(当 a1=a2,b1=b2 时)精确和区间删失数据的对数似然为:
LL.reduced.exact <- function(par,data){sum(log(dweibull(data,shape=par[1],scale=par[2])))};
LL.reduced.interval.censored<-function(par, data.lower, data.upper) {sum(log((1-pweibull(data.lower, par[1], par[2])) – (1-pweibull(data.upper, par[1],par[2]))))}
R Code:
# n (sample size) = 500
# sim (number of simulations) = 1000
# alpha = .05
# Parameters of Weibull distributions:
#group 1: a1=1, b1=20
#group 2: a2=1*1.5 b2=b1
n=500
sim=1000
alpha=.05
a1=1
b1=20
a2=a1*1.5
b2=b1
#OR: a1=1, b1=20, a2=a1*1.5, b2=b1*0.5
# the main question is how to build this log-likelihood model, when a1!=a2, and b1=b2
# (or a1!=a2, and b1!=b2)
LL.full<-?????
LL.reduced <- function(par,data){sum(log(dweibull(data,shape=par[1],scale=par[2])))}
LR.test<-function(red,full,df) {
lrt<-(-2)*(red-full)
pvalue<-1-pchisq(lrt,df)
return(data.frame(lrt,pvalue))
}
rejections<-NULL
for (i in 1:sim) {
RV1<-rweibull (n, a1, b1)
RV2<-rweibull (n, a2, b2)
RV.Total<-c(RV1, RV2)
par.start<-c(1, 15)
mle.full<- ????????????
mle.reduced<-optim(par.start, LL, data=RV.Total, control=list(fnscale=-1))
LL.full<-?????
LL.reduced<-mle.reduced$value
LRT<-LR.test(LL.reduced, LL.full, 1)
rejections1<-ifelse(LRT$pvalue<alpha,1,0)
rejections<-c(rejections, rejections1)
}
table(rejections)
sum(table(rejections)[[2]])/sim # estimated power
最佳答案
是的,您可以将两组的对数似然相加(如果它们是单独计算的)。就像您对观测向量的对数似然求和一样,每个观测都有不同的生成参数。
我更喜欢考虑一个大向量(即形状参数),它包含根据协变量结构(即组成员资格)而变化的值。在线性模型上下文中,该向量可以等于线性预测变量(一旦被链接函数适当转换):设计矩阵和回归系数向量的点积。
这是一个(非功能化的)示例:
## setup true values
nobs = 50 ## number of observations
a1 = 1 ## shape for first group
b1 = 2 ## scale parameter for both groups
beta = c(a1, a1 * 1.5) ## vector of linear coefficients (group shapes)
## model matrix for full, null models
mm_full = cbind(grp1 = rep(c(1,0), each = nobs), grp2 = rep(c(0,1), each = nobs))
mm_null = cbind(grp1 = rep(1, nobs*2))
## shape parameter vector for the full, null models
shapes_full = mm_full %*% beta ## different shape parameters by group (full model)
shapes_null = mm_null %*% beta[1] ## same shape parameter for all obs
scales = rep(b1, length(shapes_full)) ## scale parameters the same for both groups
## simulate response from full model
response = rweibull(length(shapes_full), shapes_full, scales)
## the log likelihood for the full, null models:
LL_full = sum(dweibull(response, shapes_full, scales, log = T))
LL_null = sum(dweibull(response, shapes_null, scales, log = T))
## likelihood ratio test
LR_test = function(LL_null, LL_full, df) {
LR = -2 * (LL_null - LL_full) ## test statistic
pchisq(LR, df = df, ncp = 0, lower = F) ## probability of test statistic under central chi-sq distribution
}
LR_test(LL_null, LL_full, 1) ## 1 degrees freedom (1 parameter added)
## (negative) log-likelihood function
LL_weibull = function(par, data, mm, inv_link_fun = function(.) .){
P = ncol(mm) ## number of regression coefficients
N = nrow(mm) ## number of observations
shapes = inv_link_fun(mm %*% par[1:P]) ## shape vector (possibly transformed)
scales = rep(par[P+1], N) ## scale vector
-sum(dweibull(data, shape = shapes, scale = scales, log = T)) ## negative log likelihood
}
## function to simulate data, perform LRT
weibull_sim = function(true_shapes, true_scales, mm_full, mm_null){
## simulate response
response = rweibull(length(true_shapes), true_shapes, true_scales)
## find MLE
mle_full = optim(par = rep(1, ncol(mm_full)+1), fn = LL_weibull, data = response, mm = mm_full)
mle_null = optim(par = rep(1, ncol(mm_null)+1), fn = LL_weibull, data = response, mm = mm_null)
## likelihood ratio test
df = ncol(mm_full) - ncol(mm_null)
return(LR_test(-mle_null$value, -mle_full$value, df))
}
## run simulations
nsim = 1000
pvals = sapply(1:nsim, function(.) weibull_sim(shapes_full, scales, mm_full, mm_null) )
## calculate power
alpha = 0.05
power = sum(pvals < alpha) / nsim
par
中明确索引适当的生成参数) )。
pweibull
)的累积分布函数 F(T) 给出了时间 T 之前的失效概率。所以,
LL_ic_weibull <- function(par, data, mm){
## 'data' has two columns, left and right times of censoring interval
P = ncol(mm) ## number of regression coefficients
shapes = mm %*% par[1:P]
scales = par[P+1]
-sum(log(pweibull(data[,2], shape = shapes, scale = scales) - pweibull(data[,1], shape = shapes, scale = scales)))
}
LL_ic_weibull2 <- function(par, data, nobs){
## 'data' has two columns, left and right times of censoring interval
## 'nobs' is a vector that contains the num. observations for each group (grp1, grp2, ...)
P = length(nobs) ## number of regression coefficients
shapes = rep(par[1:P], nobs)
scales = par[P+1]
-sum(log(pweibull(data[,2], shape = shapes, scale = scales) - pweibull(data[,1], shape = shapes, scale = scales)))
}
## generate intervals from simulated response (above)
left = ifelse(response - 0.2 < 0, 0, response - 0.2)
right = response + 0.2
response_ic = cbind(left, right)
## find MLE w/ first LL function (model matrix)
mle_ic_full = optim(par = c(1,1,3), fn = LL_ic_weibull, data = response_ic, mm = mm_full)
mle_ic_null = optim(par = c(1,3), fn = LL_ic_weibull, data = response_ic, mm = mm_null)
## find MLE w/ second LL function (groups only)
nobs_per_group = apply(mm_full, 2, sum) ## just contains number of observations per group
nobs_one_group = nrow(mm_null) ## one group so only one value
mle_ic_full2 = optim(par = c(1,1,3), fn = LL_ic_weibull2, data = response_ic, nobs = nobs_per_group)
mle_ic_null2 = optim(par = c(1,3), fn = LL_ic_weibull2, data = response_ic, nobs = nobs_one_group)
关于r - 如何在 R 中编写多参数对数似然函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20786249/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!