- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个来自 Pandas: conditional rolling count 的问题.我想在数据框中创建一个新列,以反射(reflect)满足多个条件的行的累积计数。
使用以下示例和来自 stackoverflow 25119524 的代码
import pandas as pd
l1 =["1", "1", "1", "2", "2", "2", "2", "2"]
l2 =[1, 2, 2, 2, 2, 2, 2, 3]
l3 =[45, 25, 28, 70, 95, 98, 120, 80]
cowmast = pd.DataFrame(list(zip(l1, l2, l3)))
cowmast.columns =['Cow', 'Lact', 'DIM']
def rolling_count(val):
if val == rolling_count.previous:
rolling_count.count +=1
else:
rolling_count.previous = val
rolling_count.count = 1
return rolling_count.count
rolling_count.count = 0 #static variable
rolling_count.previous = None #static variable
cowmast['xmast'] = cowmast['Cow'].apply(rolling_count) #new column in dataframe
cowmast
输出是每头奶牛的 xmast(乳腺炎次数)
Cow Lact DIM xmast0 1 1 45 11 1 2 25 22 1 2 28 33 2 2 70 14 2 2 95 25 2 2 98 36 2 2 120 47 2 3 80 5
What I would like to do is restart the count for each cow (cow) lactation (Lact) and only increment the count when the number of days (DIM) between rows is more than 7.
To incorporate more than one condition to reset the count for each cows lactation (Lact) I used the following code.
def count_consecutive_items_n_cols(df, col_name_list, output_col):
cum_sum_list = [
(df[col_name] != df[col_name].shift(1)).cumsum().tolist() for col_name in col_name_list
]
df[output_col] = df.groupby(
["_".join(map(str, x)) for x in zip(*cum_sum_list)]
).cumcount() + 1
return df
count_consecutive_items_n_cols(cowmast, ['Cow', 'Lact'], ['Lxmast'])
这会产生以下输出
最佳答案
其实,你的密码设置xmast
和 Lxmast
如果您使用了 referenced question 中获得最高票数的解决方案,则可以大大简化。 .
重命名您的数据框 cowmast
至 df
,您可以设置xmast
如下:
df['xmast'] = df.groupby((df['Cow'] != df['Cow'].shift(1)).cumsum()).cumcount()+1
同理,设置
Lxmast
, 您可以使用:
df['Lxmast'] = (df.groupby([(df['Cow'] != df['Cow'].shift(1)).cumsum(),
(df['Lact'] != df['Lact'].shift()).cumsum()])
.cumcount()+1
)
数据输入
l1 =["1", "1", "1", "2", "2", "2", "2", "2"]
l2 =[1, 2, 2, 2, 2, 2, 2, 3]
l3 =[45, 25, 28, 70, 95, 98, 120, 80]
cowmast = pd.DataFrame(list(zip(l1, l2, l3)))
cowmast.columns =['Cow', 'Lact', 'DIM']
df = cowmast
输出
print(df)
Cow Lact DIM xmast Lxmast
0 1 1 45 1 1
1 1 2 25 2 1
2 1 2 28 3 2
3 2 2 70 1 1
4 2 2 95 2 2
5 2 2 98 3 3
6 2 2 120 4 4
7 2 3 80 5 1
现在,继续执行
中突出显示的需求的最后一部分。粗体 以下:
What I would like to do is restart the count for each cow (cow)lactation (Lact) and only increment the count when the number of days(DIM) between rows is more than 7.
m_Cow = (df['Cow'] != df['Cow'].shift()).cumsum()
m_Lact = (df['Lact'] != df['Lact'].shift()).cumsum()
然后,我们可以重写代码来设置
Lxmast
以更易读的格式,如下:
df['Lxmast'] = df.groupby([m_Cow, m_Lact]).cumcount()+1
现在,转向这里的主要作品。假设我们创建了另一个新列
Adjusted
为了它:
df['Adjusted'] = (df.groupby([m_Cow, m_Lact])
['DIM'].diff().abs().gt(7)
.groupby([m_Cow, m_Lact])
.cumsum()+1
)
结果:
print(df)
Cow Lact DIM xmast Lxmast Adjusted
0 1 1 45 1 1 1
1 1 2 25 2 1 1
2 1 2 28 3 2 1
3 2 2 70 1 1 1
4 2 2 95 2 2 2
5 2 2 98 3 3 2
6 2 2 120 4 4 3
7 2 3 80 5 1 1
在这里,在
df.groupby([m_Cow, m_Lact])
之后,我们取列
DIM
并通过
.diff()
检查每一行与前一行的差异并取绝对值
.abs()
,然后通过
.gt(7)
检查它是否 > 7在代码片段中
['DIM'].diff().abs().gt(7)
.然后我们再次按相同的分组进行分组
.groupby([m_Cow, m_Lact])
因为这第三个条件在前两个条件的分组内。我们使用的最后一步
.cumsum()
在第三个条件上,所以只有当第三个条件为真时,我们才增加计数。
DIM
时增加计数是
增加 > 7 仅(例如 70 到 78)并排除大小写
减少 > 7 (不是从 78 到 70),您可以删除
.abs()
在上面的代码中的一部分:
df['Adjusted'] = (df.groupby([m_Cow, m_Lact])
['DIM'].diff().gt(7)
.groupby([m_Cow, m_Lact])
.cumsum()+1
)
编辑(可能的简化取决于您的数据序列)
Cow
和
Lact
有点已经在排序的顺序,有机会进一步简化代码。
col count
0 B 1
1 B 2
2 A 1 # Value does not match previous row => reset counter to 1
3 A 2
4 A 3
5 B 1 # Value does not match previous row => reset counter to 1
在这里,最后
B
最后一行与其他分隔
B
's 并且它需要将计数重置为 1 而不是从最后一个
count
继续前 2 个
B
(变成3)。因此,分组需要将当前行与前一行进行比较以获得正确的分组。否则,当我们使用
.groupby()
时以及
B
的值在处理过程中组合在一起,
count
最后一个条目的值可能无法正确重置为 1。
Cow
和
Lact
在数据构建过程中已经自然排序,或者已经按指令排序,例如:
df = df.sort_values(['Cow', 'Lact'])
然后,我们可以简化我们的代码,如下所示:
Cow
,
Lact
] 排序时):
df['xmast'] = df.groupby('Cow').cumcount()+1
df['Lxmast'] = df.groupby(['Cow', 'Lact']).cumcount()+1
df['Adjusted'] = (df.groupby(['Cow', 'Lact'])
['DIM'].diff().abs().gt(7)
.groupby([df['Cow'], df['Lact']])
.cumsum()+1
)
3 列中的相同结果和输出值
xmast
,
Lxmast
和
Adjusted
关于python - Pandas 条件滚动计数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69241492/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!