- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我们在 R 中有以下数据集:
> td
Type Rep Value1 Value2
1 A 1 7 1
2 A 2 5 4
3 A 3 5 3
4 A 4 8 2
5 B 1 5 10
6 B 2 6 1
7 B 3 7 1
8 C 1 8 13
9 C 2 8 13
> td <- structure(list(Type = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
3L, 3L), .Label = c("A", "B", "C"), class = "factor"), Rep = c(1L,
2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L), Value1 = c(7L, 5L, 5L, 8L, 5L,
6L, 7L, 8L, 8L), Value2 = c(1L, 4L, 3L, 2L, 10L, 1L, 1L, 13L,
13L)), .Names = c("Type", "Rep", "Value1", "Value2"), class = "data.frame",
row.names = c(NA, -9L))
我想生成下表:
Type MinValue1 MinValue2 MeanValue1 MeanValue2
1 A 5 3 6.25 2.5
2 B 5 10 6.00 4.0
3 C 3 13 8.00 13.0
在此表中,数据按“类型”汇总。列“MinValue1”是特定类型的最小值,列“MinValue2”是“Value2”的最小值,给定列“Value1”的最小值。列均值*是所有观察值的一般平均值。
实现此目的的一种方法是实现迭代每种类型并进行数学计算的循环。但是,我正在寻找一种更好/更简单/更漂亮的方法来执行此类操作。
我玩过“tidyverse”中的工具:
> library(tidyverse)
> td %>%
group_by(Type) %>%
summarise(MinValue1 = min(Value1),
MeanValue1 = mean(Value1),
MeanValue2 = mean(Value2))
# A tibble: 3 × 4
Type MinValue1 MeanValue1 MeanValue2
<fctr> <int> <dbl> <dbl>
1 A 5 6.25 2.5
2 B 5 6.00 4.0
3 C 8 8.00 13.0
请注意,我们这里没有列“MinValue2”。另请注意,“summarise(..., MinValue2 = min(Value2), ...)”不起作用,因为此解决方案采用一种类型的所有观察值中的最小值。
我们可以玩“切片”,然后合并结果:
> td %>% group_by(Type) %>% slice(which.min(Value1))
Source: local data frame [3 x 4]
Groups: Type [3]
Type Rep Value1 Value2
<fctr> <int> <int> <int>
1 A 3 5 4
2 B 1 5 10
3 C 1 8 13
但请注意,“切片”工具在这里对我们没有帮助:“类型 A,值 1 5”应该具有“值 2”== 3,而不是切片返回的 == 4。
那么,你们有没有优雅的方法来实现我想要的结果?谢谢!
最佳答案
一种方法是使用 order
函数的属性来断开与另一个向量的联系:
get_min_at_min <- function(vec1, vec2) {
return(vec2[order(vec1, vec2)[1]])
}
这将返回 vec2
的最小值,其中索引对应于 vec1
的最小值。使用此功能管道很简单:
td %>%
group_by(Type) %>%
summarise(MinValue1 = min(Value1),
MinValue2 = get_min_at_min(Value1, Value2),
MeanValue1 = mean(Value1),
MeanValue2 = mean(Value2))
或者只是简单地利用这样一个事实,即可以在 dplyr
函数中处理计算变量:
td %>%
group_by(Type) %>%
summarise(MinValue1 = min(Value1),
MinValue2 = min(Value2[Value1 == MinValue1]),
MeanValue1 = mean(Value1),
MeanValue2 = mean(Value2))
关于r - 给定列的最小值,在另一列中找到最小值(dplyr),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41664449/
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有一个数据( df_1 ): df_1 % select_at(.vars = 'var_1') var_1 1 99.47262 10 25.91552 没关系。但: df_1
我正在尝试安装dplyr软件包,但收到一条错误消息,提示“库(dplyr)中存在错误:没有名为dplyr的软件包”。我正在使用窗口系统和Ri386 3.5.2。我尝试按照其他人的建议使用代码insta
假设我想以并行方式申请 myfunction到 myDataFrame 的每一行.假设 otherDataFrame是一个包含两列的数据框:COLUNM1_odf和 COLUMN2_odf出于某些原因
我目前正在构建一个包,我想知道是否有办法调用 %>%来自 dplyr 的操作符,而无需实际附加 dplyr 包。例如,对于从包中导出的任何函数,您可以使用双冒号 ( :: ) 调用它。所以如果我想使用
library(dplyr) mtcars %>% group_by(vs) %>% do(tt=t.test(mpg~am, data=.)) %>% mutate(t=tt$statist
我正在尝试为一组标准曲线构建一系列线性模型。 目前这段代码正在产生我想要的输出(每个线性模型的截距和斜率): slopes % group_by(plate, col, row, conc_ug_mL
我正在寻找替换我的一些使用 dplyr::do 的 R 代码,因为这个函数很快就会被弃用。我的很多工作都需要创建分层 CDF 图。使用 dply:do 时,我分层的变量作为变量传递给结果数据框,然后我
问题 我正在尝试使用 dplyr::mutate()和 dplyr::case_when()在数据框中创建新的数据列,该列使用存储在另一个对象(“查找列表”)中的数据填充,并基于数据框中列中的信息。
最近我发现了很棒的 dplyr.spark.hive启用 dplyr 的软件包前端操作 spark或 hive后端。 在包的 README 中有关于如何安装此包的信息: options(repos =
我正在尝试在 dplyr 链中使用 data.frame 两次。这是一个给出错误的简单示例 df % group_by(Type) %>% summarize(X=n()) %>% mu
当我浏览答案时 here , 我找到了 this solution与 data.frame 完全符合预期. library(dplyr) # dplyr_0.4.3 library(data.tab
我的数据来自一个数据库,根据我运行 SQL 查询的时间,该数据库可能包含一周到另一周不同的 POS 值。 不知道哪些值将在变量中使得自动创建报告变得非常困难。 我的数据如下所示: sample % p
我想定义与“扫帚”包中类似的功能 library(dplyr) library(broom) mtcars %>% group_by(am) %>% do(model = lm(mpg ~ w
set.seed(123) df % group_by(id) %>% mutate(roll.sum = c(x[1:4], zoo::rollapply(x, 5, sum))) # Groups
先来个样本数据 set.seed(123) dat 1 -4 2 6 3 -2 4
我有一个带列的数据框 x1, x2, group我想生成一个带有额外列的新数据框 rank表示x1的顺序在其组中。 有相关问题here ,但已接受的答案似乎不再有效。 到这里为止,很好: librar
我有一个示例 df,如下所示: d% group_by(CaseNo) %>% arrange(desc(Submissiondate)) %>% dplyr::mutate(rank = row_n
我有一个数据框,其中包含一些数据输入错误。 我希望将每组的这些异常值替换为每组最常见的值。 我的数据如下: df % group_by(CODE) %>% mutate(across(c(DOSAGE
我是一名优秀的程序员,十分优秀!