gpt4 book ai didi

r - R中的数据平滑

转载 作者:行者123 更新时间:2023-12-04 12:20:40 24 4
gpt4 key购买 nike

此问题与此有关 one我之前问过的。但要回答这个问题,不必提及那个问题。

数据

我有一个数据集,其中包含以 0.1 秒为间隔记录的 2169 辆车的速度。因此,单个车辆有许多行。在这里,我仅复制了车辆 #2 的数据:

> dput(uma)
structure(list(Frame.ID = 13:445, Vehicle.velocity = c(40, 40,
40, 40, 40, 40, 40, 40.02, 40.03, 39.93, 39.61, 39.14, 38.61,
38.28, 38.42, 38.78, 38.92, 38.54, 37.51, 36.34, 35.5, 35.08,
34.96, 34.98, 35, 34.99, 34.98, 35.1, 35.49, 36.2, 37.15, 38.12,
38.76, 38.95, 38.95, 38.99, 39.18, 39.34, 39.2, 38.89, 38.73,
38.88, 39.28, 39.68, 39.94, 40.02, 40, 39.99, 39.99, 39.65, 38.92,
38.52, 38.8, 39.72, 40.76, 41.07, 40.8, 40.59, 40.75, 41.38,
42.37, 43.37, 44.06, 44.29, 44.13, 43.9, 43.92, 44.21, 44.59,
44.87, 44.99, 45.01, 45.01, 45, 45, 45, 44.79, 44.32, 43.98,
43.97, 44.29, 44.76, 45.06, 45.36, 45.92, 46.6, 47.05, 47.05,
46.6, 45.92, 45.36, 45.06, 44.96, 44.97, 44.99, 44.99, 44.99,
44.99, 45.01, 45.02, 44.9, 44.46, 43.62, 42.47, 41.41, 40.72,
40.49, 40.6, 40.76, 40.72, 40.5, 40.38, 40.43, 40.38, 39.83,
38.59, 37.02, 35.73, 35.04, 34.85, 34.91, 34.99, 34.99, 34.97,
34.96, 34.98, 35.07, 35.29, 35.54, 35.67, 35.63, 35.53, 35.53,
35.63, 35.68, 35.55, 35.28, 35.06, 35.09, 35.49, 36.22, 37.08,
37.8, 38.3, 38.73, 39.18, 39.62, 39.83, 39.73, 39.58, 39.57,
39.71, 39.91, 40, 39.98, 39.97, 40.08, 40.38, 40.81, 41.27, 41.69,
42.2, 42.92, 43.77, 44.49, 44.9, 45.03, 45.01, 45, 45, 45, 45,
45, 45, 45, 45, 45, 45, 45, 44.99, 45.03, 45.26, 45.83, 46.83,
48.2, 49.68, 50.95, 51.83, 52.19, 52, 51.35, 50.38, 49.38, 48.63,
48.15, 47.87, 47.78, 48.01, 48.63, 49.52, 50.39, 50.9, 50.96,
50.68, 50.3, 50.05, 49.94, 49.87, 49.82, 49.82, 49.88, 49.96,
50, 50, 49.98, 49.98, 50.16, 50.64, 51.43, 52.33, 53.01, 53.27,
53.22, 53.25, 53.75, 54.86, 56.36, 57.64, 58.28, 58.29, 57.94,
57.51, 57.07, 56.64, 56.43, 56.73, 57.5, 58.27, 58.55, 58.32,
57.99, 57.89, 57.92, 57.74, 57.12, 56.24, 55.51, 55.1, 54.97,
54.98, 55.02, 55.03, 54.86, 54.3, 53.25, 51.8, 50.36, 49.41,
49.06, 49.17, 49.4, 49.51, 49.52, 49.51, 49.45, 49.24, 48.84,
48.29, 47.74, 47.33, 47.12, 47.06, 47.07, 47.08, 47.05, 47.04,
47.25, 47.68, 47.93, 47.56, 46.31, 44.43, 42.7, 41.56, 41.03,
40.92, 40.92, 40.98, 41.19, 41.45, 41.54, 41.32, 40.85, 40.37,
40.09, 39.99, 39.99, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
39.98, 39.97, 40.1, 40.53, 41.36, 42.52, 43.71, 44.57, 45.01,
45.1, 45.04, 45, 45, 45, 45, 45, 45, 44.98, 44.97, 45.08, 45.39,
45.85, 46.2, 46.28, 46.21, 46.29, 46.74, 47.49, 48.35, 49.11,
49.63, 49.89, 49.94, 49.97, 50.14, 50.44, 50.78, 51.03, 51.12,
51.05, 50.85, 50.56, 50.26, 50.06, 50.1, 50.52, 51.36, 52.5,
53.63, 54.46, 54.9, 55.03, 55.09, 55.23, 55.35, 55.35, 55.23,
55.07, 54.99, 54.98, 54.97, 55.06, 55.37, 55.91, 56.66, 57.42,
58.07, 58.7, 59.24, 59.67, 59.95, 60.02, 60, 60, 60, 60, 60,
60.01, 60.06, 60.23, 60.65, 61.34, 62.17, 62.93, 63.53, 64, 64.41,
64.75, 65.04, 65.3, 65.57, 65.75, 65.74, 65.66, 65.62, 65.71,
65.91, 66.1, 66.26, 66.44, 66.61, 66.78, 66.91, 66.99, 66.91,
66.7, 66.56, 66.6, 66.83, 67.17, 67.45, 67.75, 68.15, 68.64,
69.15, 69.57, 69.79, 69.79, 69.72, 69.72, 69.81, 69.94, 70, 70.01,
70.02, 70.03)), .Names = c("Frame.ID", "Vehicle.velocity"), class = "data.frame", row.names = c(NA,
433L))

Frame.ID 是观察到 Vehicle.velocity 的时间范围。速度变量中有一些噪音,我想平滑它。

方法

为了平滑速度,我使用以下等式:

equation

在哪里,
增量 = 10
Nalpha = 数据点数(行)
i = 1, ... ,Nalpha(即行号)
D = {i-1, Nalpha - i, 3*delta=30} 的最小值
xalpha = 速度



我已经浏览了 filter 的文档和 convolution在 R 中。似乎我必须了解卷积才能做到这一点。然而,我已经尽力了,无法理解卷积是如何工作的!链接的问题有一个答案,它帮助我理解函数中的一些内部工作原理,但我仍然不确定。
任何人都可以在这里解释一下这件事是如何工作的吗?或者指导我使用另一种方法来实现相同的目的,即应用等式?

我当前的代码有效但很长

这是什么 uma好像:
> head(uma)
Frame.ID Vehicle.velocity
1 13 40
2 14 40
3 15 40
4 16 40
5 17 40
6 18 40

uma$i <- 1:nrow(uma) # this is i
uma$im1 <- uma$i - 1
uma$Nai <- nrow(uma) - uma$i # this is Nalpha
uma$delta3 <- 30 # this is 3 times delta
uma$D <- pmin(uma$im1, uma$Nai, uma$delta3) # selecting the minimum of {i-1, Nalpha - i, 3*delta=15}
uma$imD <- uma$i - uma$D # i-D
uma$ipD <- uma$i + uma$D # i+D

uma <- ddply(uma, .(Frame.ID), transform, k = imD:ipD) # to include all k in the data frame
umai <- uma
umai$imk <- umai$i - umai$k # i-k
umai$aimk <- (-1) * abs(umai$imk) # -|i-k|
umai$delta <- 10
umai$kernel <- exp(umai$aimk/umai$delta) # The kernel in the equation i.e. EXP^-|i-k|/delta
umai$p <- umai$Vehicle.velocity[match(umai$k,umai$i)] #observed velocity in kth row as described in equation as t(k)
umai$kernelp <- umai$p * umai$kernel # the product of kernel and observed velocity in kth row as described in equation as t(k)
umair <- ddply(umai, .(Frame.ID), summarize, Z = sum(kernel), prod = sum(kernelp)) # summing the kernel to get Z and summing the product to get the numerator of the equation
umair$new.Y <- umair$prod/umair$Z # the final step to get the smoothed velocity

阴谋

仅供引用,如果我根据时间范围绘制观察到的和平滑的速度,我们可以看到平滑的结果:
ggplot() + 
geom_point(data=uma,aes(y=Vehicle.velocity, x= Frame.ID)) +
geom_point(data=umair,aes(y=new.Y, x= Frame.ID), color="red")

smooth

请指导我使用卷积,帮助我使我的代码简短并适用于所有车辆(由数据集中的 Vehicle.ID 表示)。

dplyr

好的,所以我使用了以下代码,它可以工作,但在 32 GB RAM 上需要 3 小时。任何人都可以提出改进以加快速度( umalumavumaa 各花费 1 小时)吗?
uma <- tbl_df(uma)
uma <- uma %>% # take data frame
group_by(Vehicle.ID) %>% # group by Vehicle ID
mutate(i = 1:length(Frame.ID), im1 = i-1, Nai = length(Frame.ID) - i,
Dv = pmin(im1, Nai, 30),
Da = pmin(im1, Nai, 120),
Dl = pmin(im1, Nai, 15),

imDv = i - Dv,
ipDv = i + Dv,
imDa = i - Da,
ipDa = i + Da,
imDl = i - Dl,
ipDl = i + Dl) %>% # finding i, i-1 and Nalpha-i, D, i-D and i+D for location, velocity and acceleration
ungroup()



umav <- uma %>%
group_by(Vehicle.ID, Frame.ID) %>%
do(data.frame(kv = .$imDv:.$ipDv)) %>%
left_join(x=., y=uma) %>%
mutate(imk = i - kv, aimk = (-1) * abs(imk), delta = 10, kernel = exp(aimk/delta)) %>%
ungroup() %>%
group_by(Vehicle.ID) %>%
mutate(p = Vehicle.velocity2[match(kv,i)], kernelp = p * kernel) %>%
ungroup() %>%
group_by(Vehicle.ID, Frame.ID) %>%
summarise(Z = sum(kernel), prod = sum(kernelp)) %>%
mutate(svel = prod/Z) %>%
ungroup()



umaa <- uma %>%
group_by(Vehicle.ID, Frame.ID) %>%
do(data.frame(ka = .$imDa:.$ipDa)) %>%
left_join(x=., y=uma) %>%
mutate(imk = i - ka, aimk = (-1) * abs(imk), delta = 10, kernel = exp(aimk/delta)) %>%
ungroup() %>%
group_by(Vehicle.ID) %>%
mutate(p = Vehicle.acceleration2[match(ka,i)], kernelp = p * kernel) %>%
ungroup() %>%
group_by(Vehicle.ID, Frame.ID) %>%
summarise(Z = sum(kernel), prod = sum(kernelp)) %>%
mutate(sacc = prod/Z) %>%
ungroup()




umal <- uma %>%
group_by(Vehicle.ID, Frame.ID) %>%
do(data.frame(kl = .$imDl:.$ipDl)) %>%
left_join(x=., y=uma) %>%
mutate(imk = i - kl, aimk = (-1) * abs(imk), delta = 10, kernel = exp(aimk/delta)) %>%
ungroup() %>%
group_by(Vehicle.ID) %>%
mutate(p = Local.Y[match(kl,i)], kernelp = p * kernel) %>%
ungroup() %>%
group_by(Vehicle.ID, Frame.ID) %>%
summarise(Z = sum(kernel), prod = sum(kernelp)) %>%
mutate(ycoord = prod/Z) %>%
ungroup()

umal <- select(umal,c("Vehicle.ID", "Frame.ID", "ycoord"))
umav <- select(umav, c("Vehicle.ID", "Frame.ID", "svel"))
umaa <- select(umaa, c("Vehicle.ID", "Frame.ID", "sacc"))

umair <- left_join(uma, umal) %>% left_join(x=., y=umav) %>% left_join(x=., y=umaa)

最佳答案

一个好的第一步是使用 for 循环(我将用 sapply 隐藏它)并对每个索引执行指数平滑:

josilber1 <- function(uma) {
delta <- 10
sapply(1:nrow(uma), function(i) {
D <- min(i-1, nrow(uma)-i, 30)
rng <- (i-D):(i+D)
rng <- rng[rng >= 1 & rng <= nrow(uma)]
expabs <- exp(-abs(i-rng)/delta)
return(sum(uma$Vehicle.velocity[rng] * expabs) / sum(expabs))
})
}

一种更复杂的方法是仅计算每个索引的指数平滑函数的增量变化(而不是在每个索引处重新求和)。指数平滑函数有一个下部(当前索引之前的数据;我在下面的代码中包含在 low 中的当前索引)和一个上部(当前索引之后的数据;下面代码中的 high)。当我们遍历向量时,下部的所有数据的权重变小(我们除以 mult ),而上部的所有数据的权重更大(我们乘以 mult )。最左边的元素从 low 中删除, high 中最左边的元素移至 low ,并在 high 的右侧添加一个元素.

实际代码在处理向量的开头和结尾以及处理数值稳定性问题时有点困惑(每次迭代 high 中的误差乘以 mult):
josilber2 <- function(uma) {
delta <- 10
x <- uma$Vehicle.velocity
ret <- c(x[1], rep(NA, nrow(uma)-1))
low <- x[1]
high <- 0
norm <- 1
old.D <- 0
mult <- exp(1/delta)
for (i in 2:nrow(uma)) {
D <- min(i-1, nrow(uma)-i, 30)
if (D == old.D + 1) {
low <- low / mult + x[i]
high <- high * mult - x[i] + x[i+D-1]/mult^(D-1) + x[i+D]/mult^D
norm <- norm + 2 / mult^D
} else if (D == old.D) {
low <- low / mult - x[i-(D+1)]/mult^(D+1) + x[i]
high <- high * mult - x[i] + x[i+D]/mult^D
} else {
low <- low / mult - x[i-(D+2)]/mult^(D+2) - x[i-(D+1)]/mult^(D+1) + x[i]
high <- high * mult - x[i]
norm <- norm - 2 / mult^(D+1)
}

# For numerical stability, recompute high every so often
if (i %% 50 == 0) {
rng <- (i+1):(i+D)
expabs <- exp(-abs(i-rng)/delta)
high <- sum(x[rng] * expabs)
}

ret[i] <- (low+high)/norm
old.D <- D
}
return(ret)
}

R 代码如 josilber2使用 Rcpp 通常可以大大加快速度包裹:
library(Rcpp)
josilber3 <- cppFunction(
"
NumericVector josilber3(NumericVector x) {
double delta = 10.0;
NumericVector ret(x.size(), 0.0);
ret[0] = x[0];
double low = x[0];
double high = 0.0;
double norm = 1.0;
int oldD = 0;
double mult = exp(1/delta);
for (int i=1; i < x.size(); ++i) {
int D = i;
if (x.size()-i-1 < D) D = x.size()-i-1;
if (30 < D) D = 30;
if (D == oldD + 1) {
low = low / mult + x[i];
high = high * mult - x[i] + x[i+D-1]/pow(mult, D-1) + x[i+D]/pow(mult, D);
norm = norm + 2 / pow(mult, D);
} else if (D == oldD) {
low = low / mult - x[i-(D+1)]/pow(mult, D+1) + x[i];
high = high * mult - x[i] + x[i+D]/pow(mult, D);
} else {
low = low / mult - x[i-(D+2)]/pow(mult, D+2) - x[i-(D+1)]/pow(mult, D+1) + x[i];
high = high * mult - x[i];
norm = norm - 2 / pow(mult, D+1);
}

if (i % 50 == 0) {
high = 0.0;
for (int j=i+1; j <= i+D; ++j) {
high += x[j] * exp((i-j)/delta);
}
}

ret[i] = (low+high)/norm;
oldD = D;
}
return ret;
}")

我们现在可以对这三种新方法的改进进行基准测试:
all.equal(umair.fxn(uma), josilber1(uma))
# [1] TRUE
all.equal(umair.fxn(uma), josilber2(uma))
# [1] TRUE
all.equal(umair.fxn(uma), josilber3(uma$Vehicle.velocity))
# [1] TRUE
library(microbenchmark)
microbenchmark(umair.fxn(uma), josilber1(uma), josilber2(uma), josilber3(uma$Vehicle.velocity))
# Unit: microseconds
# expr min lq mean median uq max neval
# umair.fxn(uma) 370006.728 382327.4115 398554.71080 393495.052 404186.153 572801.355 100
# josilber1(uma) 12879.268 13640.1310 15981.82099 14265.610 14805.419 28959.230 100
# josilber2(uma) 4324.724 4502.8125 5753.47088 4918.835 5244.309 17328.797 100
# josilber3(uma$Vehicle.velocity) 41.582 54.5235 57.76919 57.435 60.099 90.998 100

我们通过更简单的 josilber1 获得了很多改进(25 倍)和 70 倍的总加速 josilber2 (更大的增量值会带来更多优势)。与 josilber3我们实现了 6800 倍的加速,将运行时间一直降低到 54 微秒来处理单个车辆!

关于r - R中的数据平滑,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26434652/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com