gpt4 book ai didi

r - 按组提取 Survfit 中的生存概率

转载 作者:行者123 更新时间:2023-12-04 12:20:32 26 4
gpt4 key购买 nike

我是 R 中生存分析和 survfit 的新手。我想在表中提取指定时间段(诊断后 0、10、20、30 年)的 4 个组(疾病)的生存概率。这是设置:

fit <- survfit((time=time,event=death)~group)

surv.prob <- summary(fit,time=c(0,10,20,30))$surv
surv.prob包含 16 个概率,即在上面列出的 4 个不同时间段估计的 4 个组的生存概率。我想创建一个这样的表:
Group  time.period  prob

1 0 0.9

1 10 0.8

1 20 0.7

1 30 0.6

等等所有4组。

关于如何轻松创建这样的表格的任何建议?我将把这个命令放在循环中,以使用不同的协变量组合来估计结果。我在 survfit 中查看了 $table ,但这似乎只提供事件、中位数等。感谢对此的任何帮助。

SK

最佳答案

我可以使用具有 survest 函数的包“rms”轻松完成:

install.packages(rms, dependencies=TRUE);require(rms)
cfit <- cph(Surv(time, status) ~ x, data = aml, surv=TRUE)
survest(cfit, newdata=expand.grid(x=levels(aml$x)) ,
times=seq(0,50,by=10)
)$surv

0 10 20 30 40 50
1 1 0.8690765 0.7760368 0.6254876 0.4735880 0.21132505
2 1 0.7043047 0.5307801 0.3096943 0.1545671 0.02059005
Warning message:
In survest.cph(cfit, newdata = expand.grid(x = levels(aml$x)), times = seq(0, :
S.E. and confidence intervals are approximate except at predictor means.
Use cph(...,x=TRUE,y=TRUE) (and don't use linear.predictors=) for better estimates.

通过包生存,您可以在 Therneau 和 Grambsch 的书的第 264-265 页上找到一个工作示例,但这仍然需要代码在特定时间输出值。
 fit <- coxph(Surv(time, status) ~ x, data = aml) 
temp=data.frame(x=levels(aml$x))
expfit <- survfit(fit, temp)
plot(expfit, xscale=365.25, ylab="Expected")

enter image description here
> expfit$surv
1 2
[1,] 0.9508567 0.88171694
[2,] 0.8975825 0.76343993
[3,] 0.8690765 0.70430463
[4,] 0.8405707 0.64800519
[5,] 0.8105393 0.59170883
[6,] 0.8105393 0.59170883
[7,] 0.7760369 0.53078004
[8,] 0.7057873 0.41876588
[9,] 0.6686309 0.36584513
[10,] 0.6686309 0.36584513
[11,] 0.6254878 0.30969426
[12,] 0.5773770 0.25357160
[13,] 0.5292685 0.20403922
[14,] 0.4735881 0.15456706
[15,] 0.4179153 0.11309373
[16,] 0.3484162 0.07179820
[17,] 0.2113251 0.02059003
[18,] 0.2113251 0.02059003

> expfit$time
[1] 5 8 9 12 13 16 18 23 27 28 30 31 33 34 43
[16] 45 48 161

正如下面@Skaul所指出的:在生存包中,具体时间可以插入为: summary(expfit,time=c(0,10,20,30))$surv

关于r - 按组提取 Survfit 中的生存概率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26641178/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com