gpt4 book ai didi

r - 使用每个预测变量列的拟合模型分别将结果存储在数据框中

转载 作者:行者123 更新时间:2023-12-04 12:17:49 26 4
gpt4 key购买 nike

我有一个包含一列响应变量和几列预测变量的数据框。我想分别使用每个预测变量来拟合响应变量的模型,最后创建一个包含模型系数的数据框。以前,我会这样做:

data(iris)

iris_vars <- c("Sepal.Width", "Petal.Length", "Petal.Width")
fits.iris <- lapply(iris_vars, function(x) {lm(substitute(Sepal.Length ~ i, list(i = as.name(x))), data = iris)})

# extract model coeffs, so forth and so on, eventually combining into a result dataframe
iris.p <- as.data.frame(lapply(fits.iris, function(f) summary(f)$coefficients[,4]))
iris.r <- as.data.frame(lapply(fits.iris, function(f) summary(f)$r.squared))

但是,现在我已经开始使用 dplyrbroom 等,这似乎有点麻烦。使用 purrr::map 我可以或多或少地重新创建这个模型列表:

# using purrr, still uses the Response variable "Sepal.Length" as a predictor of itself
iris %>%
select(1:4) %>%
# names(select(., 2:4)) %>% this does not work
names() %>%
paste('Sepal.Length ~', .) %>%
map(~lm(as.formula(.x), data = iris))

但是,我不确定如何将此列表转换为适当的形式以与 broom::tidy 一起使用。如果我使用的是分组行,而不是列,我会存储模型拟合并使用 broom::tidy 来做这样的事情:

iris.fits <- group_by(Species) %>% do(modfit1 = lm(Sepal.Length~Sepal.Width,data=.))
tidy(iris.fits, modfit1)

当然这不是我正在做的,但我希望在使用数据列时有类似的过程。有没有办法,也许可以使用 purrr::nest 或类似的东西来创建所需的输出?

最佳答案

1) 这给出了模型拟合的 glancetidy 输出:

library(broom)

make_model <- function(nm) lm(iris[c("Sepal.Length", nm)])
fits <- Map(make_model, iris_vars)

glance_tidy <- function(x) c(unlist(glance(x)), unlist(tidy(x)[, -1]))
out <- sapply(fits, glance_tidy)

1a) 或作为 magrittr 管道:

library(magrittr)
out <- iris_vars %>% Map(f = make_model) %>% sapply(glance_tidy)

两者都给出以下矩阵:

> out
Sepal.Width Petal.Length Petal.Width
r.squared 1.382265e-02 7.599546e-01 6.690277e-01
adj.r.squared 7.159294e-03 7.583327e-01 6.667914e-01
sigma 8.250966e-01 4.070745e-01 4.779948e-01
statistic 2.074427e+00 4.685502e+02 2.991673e+02
p.value 1.518983e-01 1.038667e-47 2.325498e-37
df 2.000000e+00 2.000000e+00 2.000000e+00
logLik -1.829958e+02 -7.702021e+01 -1.011107e+02
AIC 3.719917e+02 1.600404e+02 2.082215e+02
BIC 3.810236e+02 1.690723e+02 2.172534e+02
deviance 1.007561e+02 2.452503e+01 3.381489e+01
df.residual 1.480000e+02 1.480000e+02 1.480000e+02
estimate1 6.526223e+00 4.306603e+00 4.777629e+00
estimate2 -2.233611e-01 4.089223e-01 8.885803e-01
std.error1 4.788963e-01 7.838896e-02 7.293476e-02
std.error2 1.550809e-01 1.889134e-02 5.137355e-02
statistic1 1.362763e+01 5.493890e+01 6.550552e+01
statistic2 -1.440287e+00 2.164602e+01 1.729645e+01
p.value1 6.469702e-28 2.426713e-100 3.340431e-111
p.value2 1.518983e-01 1.038667e-47 2.325498e-37

或转置:

> t(out)
r.squared adj.r.squared sigma statistic p.value df
Sepal.Width 0.01382265 0.007159294 0.8250966 2.074427 1.518983e-01 2
Petal.Length 0.75995465 0.758332718 0.4070745 468.550154 1.038667e-47 2
Petal.Width 0.66902769 0.666791387 0.4779948 299.167312 2.325498e-37 2
logLik AIC BIC deviance df.residual estimate1
Sepal.Width -182.99584 371.9917 381.0236 100.75610 148 6.526223
Petal.Length -77.02021 160.0404 169.0723 24.52503 148 4.306603
Petal.Width -101.11073 208.2215 217.2534 33.81489 148 4.777629
estimate2 std.error1 std.error2 statistic1 statistic2
Sepal.Width -0.2233611 0.47889634 0.15508093 13.62763 -1.440287
Petal.Length 0.4089223 0.07838896 0.01889134 54.93890 21.646019
Petal.Width 0.8885803 0.07293476 0.05137355 65.50552 17.296454
p.value1 p.value2
Sepal.Width 6.469702e-28 1.518983e-01
Petal.Length 2.426713e-100 1.038667e-47
Petal.Width 3.340431e-111 2.325498e-37

2) 如果我们从 glance_tidy 函数定义中删除第一个 unlist,那么我们会得到一个 2d 列表(而不是 2d 数字矩阵):

glance_tidy_l <- function(x) c(glance(x), unlist(tidy(x)[, -1]))
iris_vars %>% Map(f = make_model) %>% sapply(glance_tidy_l)

Sepal.Width Petal.Length Petal.Width
r.squared 0.01382265 0.7599546 0.6690277
adj.r.squared 0.007159294 0.7583327 0.6667914
sigma 0.8250966 0.4070745 0.4779948
statistic 2.074427 468.5502 299.1673
p.value 0.1518983 1.038667e-47 2.325498e-37
df 2 2 2
logLik -182.9958 -77.02021 -101.1107
AIC 371.9917 160.0404 208.2215
BIC 381.0236 169.0723 217.2534
deviance 100.7561 24.52503 33.81489
df.residual 148 148 148
estimate1 6.526223 4.306603 4.777629
estimate2 -0.2233611 0.4089223 0.8885803
std.error1 0.4788963 0.07838896 0.07293476
std.error2 0.1550809 0.01889134 0.05137355
statistic1 13.62763 54.9389 65.50552
statistic2 -1.440287 21.64602 17.29645
p.value1 6.469702e-28 2.426713e-100 3.340431e-111
p.value2 0.1518983 1.038667e-47 2.325498e-37

关于r - 使用每个预测变量列的拟合模型分别将结果存储在数据框中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41247229/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com