gpt4 book ai didi

python - 无效参数错误 : required broadcastable shapes at loc(unknown)

转载 作者:行者123 更新时间:2023-12-04 12:09:30 24 4
gpt4 key购买 nike

背景
我对 Python 和机器学习完全陌生。我只是试图根据我在互联网上找到的代码设置一个 UNet,并希望将它调整到我正在一点一点地处理的情况下。尝试时 .fit UNet 到训练数据,我收到以下错误:

InvalidArgumentError:  required broadcastable shapes at loc(unknown)
[[node Equal (defined at <ipython-input-68-f1422c6f17bb>:1) ]] [Op:__inference_train_function_3847]
当我搜索它时,我得到了很多结果,但大多数都是不同的错误。
这是什么意思?而且,更重要的是,我该如何解决?
导致错误的代码
此错误的上下文如下:
我想分割图像并标记不同的类。
我为训练、测试和验证数据设置了目录“trn”、“tst”和“val”。 dir_dat()功能适用 os.path.join()获取相应 data set 的完整路径. 3 个文件夹中的每个文件夹都有每个类的子目录,用整数标记。在每个文件夹中,都有一些 .tif相应类的图像。
我定义了以下图像数据生成器(训练数据稀疏,因此增强):
classes = np.array([ 0,  2,  4,  6,  8, 11, 16, 21, 29, 30, 38, 39, 51])
bs = 15 # batch size

augGen = ks.preprocessing.image.ImageDataGenerator(rotation_range = 365,
width_shift_range = 0.05,
height_shift_range = 0.05,
horizontal_flip = True,
vertical_flip = True,
fill_mode = "nearest") \
.flow_from_directory(directory = dir_dat("trn"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs, seed = 42)

tst_batches = ks.preprocessing.image.ImageDataGenerator() \
.flow_from_directory(directory = dir_dat("tst"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs, shuffle = False)

val_batches = ks.preprocessing.image.ImageDataGenerator() \
.flow_from_directory(directory = dir_dat("val"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs)
然后我基于 this example设置了UNet .在这里,我更改了一些参数以使 UNet 适应情况(多类),即最后一层的激活和损失函数:
layer_in = ks.layers.Input(shape = (imgr, imgc, imgdim))
# convert pixel integer values to float
inVals = ks.layers.Lambda(lambda x: x / 255)(layer_in)

# Contraction path
c1 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(inVals)
c1 = ks.layers.Dropout(0.1)(c1)
c1 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c1)
p1 = ks.layers.MaxPooling2D((2, 2))(c1)

c2 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p1)
c2 = ks.layers.Dropout(0.1)(c2)
c2 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c2)
p2 = ks.layers.MaxPooling2D((2, 2))(c2)

c3 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p2)
c3 = ks.layers.Dropout(0.2)(c3)
c3 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c3)
p3 = ks.layers.MaxPooling2D((2, 2))(c3)

c4 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p3)
c4 = ks.layers.Dropout(0.2)(c4)
c4 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c4)
p4 = ks.layers.MaxPooling2D(pool_size = (2, 2))(c4)

c5 = ks.layers.Conv2D(256, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p4)
c5 = ks.layers.Dropout(0.3)(c5)
c5 = ks.layers.Conv2D(256, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c5)

# Expansive path
u6 = ks.layers.Conv2DTranspose(128, (2, 2), strides = (2, 2), padding = "same")(c5)
u6 = ks.layers.concatenate([u6, c4])
c6 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u6)
c6 = ks.layers.Dropout(0.2)(c6)
c6 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c6)

u7 = ks.layers.Conv2DTranspose(64, (2, 2), strides = (2, 2), padding = "same")(c6)
u7 = ks.layers.concatenate([u7, c3])
c7 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u7)
c7 = ks.layers.Dropout(0.2)(c7)
c7 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c7)

u8 = ks.layers.Conv2DTranspose(32, (2, 2), strides = (2, 2), padding = "same")(c7)
u8 = ks.layers.concatenate([u8, c2])
c8 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u8)
c8 = ks.layers.Dropout(0.1)(c8)
c8 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c8)

u9 = ks.layers.Conv2DTranspose(16, (2, 2), strides = (2, 2), padding = "same")(c8)
u9 = ks.layers.concatenate([u9, c1], axis = 3)
c9 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u9)
c9 = ks.layers.Dropout(0.1)(c9)
c9 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c9)

out = ks.layers.Conv2D(1, (1, 1), activation = "softmax")(c9)

model = ks.Model(inputs = layer_in, outputs = out)
model.compile(optimizer = "adam", loss = "sparse_categorical_crossentropy", metrics = ["accuracy"])
model.summary()
最后,我定义了回调并运行了训练,这产生了错误:
cllbs = [
ks.callbacks.EarlyStopping(patience = 4),
ks.callbacks.ModelCheckpoint(dir_out("Checkpoint.h5"), save_best_only = True),
ks.callbacks.TensorBoard(log_dir = './logs'),# log events for TensorBoard
]

model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)
完整的控制台输出
这是运行最后一行时的完整输出(以防它有助于解决问题):
trained = model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)
Epoch 1/5
Traceback (most recent call last):

File "<ipython-input-68-f1422c6f17bb>", line 1, in <module>
trained = model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1183, in fit
tmp_logs = self.train_function(iterator)

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\def_function.py", line 889, in __call__
result = self._call(*args, **kwds)

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\def_function.py", line 950, in _call
return self._stateless_fn(*args, **kwds)

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 3023, in __call__
return graph_function._call_flat(

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 1960, in _call_flat
return self._build_call_outputs(self._inference_function.call(

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 591, in call
outputs = execute.execute(

File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,

InvalidArgumentError: required broadcastable shapes at loc(unknown)
[[node Equal (defined at <ipython-input-68-f1422c6f17bb>:1) ]] [Op:__inference_train_function_3847]

Function call stack:
train_function

最佳答案

当类标签的数量与输出层的输出形状的形状不匹配时,我遇到了这个问题。
例如,如果有 10 个类标签,我们将输出层定义为:
输出 = tf.keras.layers.Conv2D(5, (1, 1), activation = "softmax")(c9)
因为类标签的数量(=10)不等于输出形状(=5)。
然后,我们会得到这个错误。
确保类标签的数量与输出层的输出形状匹配。

关于python - 无效参数错误 : required broadcastable shapes at loc(unknown),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67557515/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com