- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有 2 个数据框,单元格中有字符串:
df1
ID t1 t2 t3
0 x1 y1 z1
1 x2 y2 z2
2 x3 y3 z3
3 x4 y4 z4
4 x1 y5 z5
df2
ID t1 t2 t3
0 x3 y3 z3
1 x4 y4 z4
2 x1 y1 z1
3 x2 y2 z2
4 x1 y7 z5
我发现我可以比较行中的差异:
#exactly the same t1, t2, and t3
pd.merge(df1, df2, on=['t1', 't2', 't3'], how='inner')
这将找到行之间的精确匹配(其中 df1 中的 t1 等于 df2 中的 t1,等等)。
如何找到特定列的 2 个数据帧之间的半匹配?也就是说,除了完全匹配之外,只有指定列可能存在差异?例如,如果我指定 t2
,匹配将是 t1 in df1 = t1 in df2
, t2 in df1 != df2
, df1 中的 t3 = df3 中的 t3
(例如,2 个数据帧中的行 ID=4
除了完全匹配外还将匹配此值)。
更新 1:
似乎很多答案都考虑了顺序(如果行不完全对齐,该方法将失败)。
尝试以下检查您的方法:
d1 = {'Entity1': ['x1', 'x2','x3','x4','x1', 'x6', 'x1'], 'Relationship': ['y1', 'y2','y3','y4','y5','y6', 'y9'], 'Entity2': ['z1', 'z2','z3','z4','z5','z6', 'z5']}
df1 = pd.DataFrame(data=d1)
d2 = {'Entity1': ['x3', 'x4','x1','x2','x6','x1'], 'Relationship': ['y3', 'y4','y1','y2','y6','y7'], 'Entity2': ['z3', 'z4','z1','z2','z7','z5']}
df2 = pd.DataFrame(data=d2)
注意精确匹配之一是x2, y2, z2
,半匹配之一是df1 = x1, y5, z5
, df2 = x1, y7,z5
最佳答案
您可以合并两个数据框,然后过滤两边 t1 和 t2 相同的所有行:
df3 = pd.merge(df1, df2, left_index=True, right_index=True)
df3[(df3["t1_x"] == df3["t1_y"]) & (df3["t3_x"] == df3["t3_y"])]
关于python - 比较 2 个 DataFrame 的半匹配行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69056031/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!