gpt4 book ai didi

R:从 Quanteda DFM、稀疏文档特征矩阵、对象中删除正则表达式?

转载 作者:行者123 更新时间:2023-12-04 12:01:30 32 4
gpt4 key购买 nike

Quanteda 包提供了稀疏文档特征矩阵 DFM,其方法包含 removeFeatures .我试过 dfm(x, removeFeatures="\\b[a-z]{1-3}\\b")删除太短的单词以及 dfm(x, keptFeatures="\\b[a-z]{4-99}\\b")保留足够长的单词但不起作用,基本上做同样的事情,即删除太短的单词。

如何从 Quanteda DFM 对象中删除正则表达式匹配?

例子。

myMatrix <-dfm(myData, ignoredFeatures = stopwords("english"), 
stem = TRUE, toLower = TRUE, removeNumbers = TRUE,
removePunct = TRUE, removeSeparators = TRUE, language = "english")
#
#How to use keptFeatures/removeFeatures here?


#Instead of RemoveFeatures/keptFeatures methods, I tried it like this but not working
x<-unique(gsub("\\b[a-zA-Z0-9]{1,3}\\b", "", colnames(myMatrix)));
x<-x[x!=""];
mmyMatrix<-myMatrix;
colnames(mmyMatrix) <- x

样本 DFM
myData <- c("a aothu oat hoah huh huh huhhh h h h n", "hello h a b c d abc abcde", "hello hallo hei hej", "Hello my name is hhh.")
myMatrix <- dfm(myData)

最佳答案

它是 dfm_select , 在 >= v0.9.9 中:

myMatrix
## Document-feature matrix of: 4 documents, 22 features (70.5% sparse).

dfm_select(myMatrix, "\\b[a-zA-Z0-9]{1,3}\\b", selection = "keep", valuetype = "regex")
## kept 14 features, from 1 supplied (regex) feature types
## Document-feature matrix of: 4 documents, 14 features (71.4% sparse).
## 4 x 14 sparse Matrix of class "dfmSparse"
## features
## docs a oat huh h n b c d abc hei hej my is hhh
## text1 1 1 2 3 1 0 0 0 0 0 0 0 0 0
## text2 1 0 0 1 0 1 1 1 1 0 0 0 0 0
## text3 0 0 0 0 0 0 0 0 0 1 1 0 0 0
## text4 0 0 0 0 0 0 0 0 0 0 0 1 1 1

关于R:从 Quanteda DFM、稀疏文档特征矩阵、对象中删除正则表达式?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41586543/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com