- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用这个数据集(在底部)来创建一个密度图,但是我遇到了这个因素的问题并让它正确聚合。我希望图形看起来像这样:
ggplot(sample, aes(as.numeric(value), colour=shortname)) + geom_density()
ggplot(sample, aes(value, colour=shortname)) + geom_density()
shortname
的两个不同值。多变的。
scale_x_discrete()
的信息,但我认为我不需要,因为我已经有了一个因素......
scale_x_discrete
通过以下方式:
ggplot(sample, aes(value, colour=shortname)) + geom_density() + scale_x_discrete(breaks=1:27, labels=c("<A",LETTERS))
sample <- structure(list(shortname = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("H1",
"H2"), class = "factor"), value = structure(c(7L, 17L, 8L, 15L,
18L, 17L, 14L, 19L, 20L, 17L, 17L, 12L, 16L, 21L, 2L, 21L, 19L,
22L, 12L, 15L, 22L, 19L, 16L, 13L, 19L, 24L, 15L, 24L, 23L, 12L,
24L, 21L, 15L, 16L, 16L, 18L, 18L, 8L, 23L, 8L, 21L, 24L, 13L,
10L, 18L, 1L, 7L, 14L, 13L, 21L, 16L, 10L, 15L, 21L, 17L, 18L,
18L, 21L, 14L, 9L, 22L, 14L, 11L, 16L, 13L, 18L, 12L, 1L, 23L,
8L, 15L, 18L, 11L, 10L, 20L, 16L, 12L, 10L, 22L, 25L, 24L, 7L,
19L, 13L, 16L, 16L, 20L, 3L, 13L, 21L, 12L, 16L, 13L, 15L, 1L,
19L, 12L, 20L, 12L, 11L, 20L, 7L, 22L, 18L, 19L, 9L, 10L, 24L,
10L, 13L, 5L, 16L, 19L, 20L, 19L, 18L, 19L, 19L, 13L, 12L, 21L,
20L, 13L, 21L, 3L, 12L, 19L, 17L, 16L, 9L, 21L, 18L, 24L, 2L,
12L, 13L, 14L, 7L, 16L, 10L, 21L, 15L, 21L, 11L, 18L, 3L, 16L,
15L, 22L, 10L, 16L, 21L, 19L, 17L, 20L, 22L, 17L, 20L, 2L, 24L,
12L, 18L, 19L, 24L, 26L, 17L, 20L, 15L, 12L, 10L, 16L, 12L, 12L,
15L, 19L, 14L, 22L, 12L, 7L, 16L, 1L, 20L, 18L, 24L, 19L, 22L,
3L, 16L, 19L, 22L, 5L, 19L, 17L, 16L, 13L, 22L, 3L, 14L, 12L,
9L, 5L, 16L, 14L, 15L, 12L, 2L, 12L, 19L, 20L, 18L, 10L, 3L,
20L, 4L, 16L, 19L, 1L, 14L, 24L, 9L, 14L, 1L, 12L, 6L, 1L, 22L,
11L, 13L, 19L, 16L, 22L, 25L, 3L, 21L, 21L, 22L, 3L, 21L, 18L,
23L, 24L, 2L, 21L, 15L, 15L, 16L, 11L, 13L, 25L, 11L, 17L, 15L,
7L, 23L, 21L, 4L, 1L, 14L, 19L, 13L, 10L, 18L, 3L, 13L, 17L,
12L, 7L, 21L, 17L, 17L, 17L, 17L, 10L, 21L, 24L, 22L, 12L, 22L,
12L, 24L, 17L, 16L, 21L, 19L, 16L, 16L, 16L, 21L, 13L, 1L, 7L,
21L, 11L, 13L, 10L, 21L, 11L, 25L, 1L, 11L, 3L, 24L, 13L, 13L,
15L, 7L, 21L, 16L, 24L, 16L, 8L, 19L, 13L, 18L, 18L, 22L, 19L,
16L, 16L, 15L, 5L, 4L, 14L, 8L, 15L, 18L, 13L, 14L, 12L, 19L,
16L, 3L, 16L, 17L, 1L, 19L, 20L, 19L, 1L, 19L, 20L, 22L, 8L,
12L, 13L, 24L, 16L, 14L, 21L, 25L, 22L, 4L, 16L, 16L, 15L, 16L,
8L, 14L, 12L, 11L, 5L, 13L, 19L, 27L, 3L, 18L, 12L, 13L, 19L,
7L, 10L, 15L, 23L, 11L, 3L, 24L, 18L, 15L, 16L, 14L, 16L, 22L,
11L, 11L, 20L, 18L, 14L, 20L, 21L, 3L, 10L, 19L, 14L, 16L, 8L,
12L, 16L, 8L, 21L, 26L, 13L, 6L, 9L, 2L, 15L, 1L, 12L, 24L, 3L,
21L, 24L, 8L, 18L, 20L, 3L, 19L, 12L, 15L, 8L, 18L, 14L, 19L,
10L, 20L, 17L, 12L, 17L, 19L, 14L, 10L, 7L, 11L, 12L, 3L, 19L,
1L, 16L, 11L, 8L, 3L, 10L, 15L, 21L, 27L, 3L, 3L, 19L, 5L, 17L,
22L, 10L, 3L, 15L, 19L, 19L, 18L, 23L, 1L, 22L, 9L, 22L, 19L,
12L, 18L, 10L, 10L, 9L, 14L, 2L, 27L, 21L, 4L, 18L, 1L, 2L, 16L,
3L, 21L, 19L, 24L, 12L, 12L, 19L, 13L, 16L, 19L, 20L, 12L, 20L,
13L, 9L, 15L, 22L, 14L, 5L, 22L, 15L, 3L, 9L, 3L, 12L, 2L, 12L,
12L, 22L, 15L, 9L, 3L, 21L, 14L, 5L, 5L, 10L, 5L, 5L, 1L, 7L,
21L, 19L, 22L, 1L, 9L, 1L, 21L, 18L, 15L, 14L, 21L, 6L, 19L,
15L, 16L, 5L, 5L, 10L, 20L, 5L, 8L, 19L, 3L, 16L, 5L, 7L, 17L,
16L, 19L, 2L, 20L, 15L, 9L, 17L, 21L, 19L, 13L, 3L, 13L, 12L,
21L, 16L, 15L, 17L, 16L, 19L, 8L, 17L, 14L, 1L, 1L, 22L, 19L,
24L, 20L, 10L, 17L, 1L, 17L, 1L, 17L, 13L, 15L, 21L, 6L, 3L,
18L, 20L, 15L, 4L, 16L, 8L, 12L, 10L, 13L, 13L, 22L, 11L, 12L,
1L, 21L, 21L, 5L, 5L, 16L, 11L, 20L, 21L, 20L, 21L, 20L, 19L,
20L, 15L, 25L, 9L, 1L, 12L, 21L, 9L, 24L, 3L, 12L, 24L, 8L, 16L,
15L, 9L, 20L, 15L, 5L, 10L, 1L, 16L, 16L, 12L, 9L, 20L, 10L,
19L, 12L, 3L, 20L, 22L, 11L, 16L, 16L, 22L, 19L, 19L, 22L, 14L,
14L, 12L, 5L, 14L, 19L, 18L, 19L, 18L, 3L, 10L, 20L, 14L, 1L,
13L, 18L, 13L, 1L, 22L, 23L, 19L, 13L, 18L, 9L, 16L, 15L, 17L,
21L, 15L, 18L, 1L, 14L, 14L, 1L, 14L, 9L, 16L, 12L, 22L, 14L,
2L, 22L, 19L, 21L, 16L, 16L, 11L, 19L, 13L, 3L, 16L, 16L, 20L,
18L, 1L, 19L, 11L, 17L, 19L, 12L, 15L, 10L, 11L, 13L, 7L, 14L,
14L, 14L, 15L, 15L, 16L, 14L, 22L, 20L, 17L, 19L, 19L, 13L, 16L,
12L, 15L, 20L, 22L, 17L, 20L, 16L, 10L, 15L, 15L, 12L, 12L, 14L,
20L, 5L, 19L, 2L, 13L, 15L, 17L, 9L, 14L, 18L, 2L, 10L, 14L,
12L, 14L, 12L, 18L, 17L, 13L, 8L, 22L, 12L, 21L, 12L, 13L, 3L,
14L, 26L, 4L, 3L, 1L, 7L, 10L, 19L, 16L, 16L, 15L, 13L, 15L,
16L, 11L, 21L, 12L, 11L, 15L, 1L, 16L, 1L, 17L, 6L, 1L, 16L,
7L, 11L, 2L, 5L, 16L, 5L, 12L, 13L, 12L, 13L, 13L, 12L, 20L,
21L, 21L, 12L, 19L, 21L, 18L, 12L, 15L, 22L, 19L, 16L, 16L, 3L,
14L, 1L, 7L, 13L, 16L, 11L, 7L, 12L, 16L, 16L, 12L, 22L, 1L,
13L, 4L, 8L, 16L, 5L, 11L, 10L, 1L, 21L, 10L, 19L, 12L, 13L,
16L, 12L, 15L, 19L, 13L, 1L, 1L, 2L, 6L, 16L, 14L, 15L, 15L,
16L, 4L, 12L, 16L, 10L, 19L, 12L, 5L, 6L, 10L, 3L, 14L, 1L, 12L,
4L, 11L, 16L, 10L, 20L, 4L, 13L, 10L, 1L, 9L, 2L, 7L, 9L, 18L,
10L, 26L, 14L, 2L, 14L, 10L, 11L, 13L, 1L, 21L, 16L, 9L, 22L,
12L, 12L, 16L, 15L, 12L, 8L, 15L, 20L, 11L, 16L, 15L, 12L, 12L,
16L, 2L, 9L, 12L, 14L, 20L, 1L, 10L, 7L, 10L, 18L, 16L, 12L,
15L, 12L, 14L, 3L, 14L, 6L, 10L, 1L, 11L, 9L, 5L, 12L, 12L, 1L,
8L, 20L, 7L, 21L, 20L, 22L, 20L, 7L, 12L, 9L, 7L, 13L, 19L, 15L,
15L, 18L, 16L, 1L, 10L, 19L, 2L, 13L, 6L, 24L, 1L, 22L, 16L,
11L, 7L, 5L, 19L, 15L, 14L, 12L, 19L, 14L, 12L, 15L, 24L, 15L,
10L, 4L, 14L, 16L, 3L, 21L, 1L, 19L, 14L, 17L, 12L, 21L, 3L,
12L, 16L, 18L, 14L, 15L, 15L, 14L, 1L, 2L, 17L, 1L, 14L, 16L,
15L, 14L, 10L, 14L, 17L, 17L, 12L, 17L, 11L, 14L, 16L, 1L, 1L,
19L, 12L, 24L, 15L, 19L, 14L, 8L, 3L, 22L, 1L, 16L, 15L, 19L,
8L, 15L, 12L, 8L, 14L, 8L, 12L, 7L, 13L, 2L, 13L, 10L, 15L, 15L,
17L, 1L, 26L, 24L, 21L, 25L, 14L, 10L, 13L, 9L, 13L, 18L, 19L,
16L, 21L, 16L, 17L, 14L, 14L, 11L, 17L, 16L, 12L, 17L, 14L, 6L,
24L, 11L, 11L, 11L, 12L, 15L, 13L, 22L, 11L, 17L, 3L, 12L, 17L,
14L, 10L, 11L, 9L, 21L, 18L, 19L, 20L, 24L, 7L, 12L, 22L, 3L,
17L, 10L, 1L, 20L, 1L, 1L, 12L, 2L, 14L, 2L, 17L, 19L, 1L, 10L,
12L, 16L, 15L, 3L, 12L, 16L, 12L, 15L, 17L, 24L, 15L, 16L, 8L,
12L, 14L, 21L, 9L, 23L, 3L, 19L, 16L, 19L, 16L, 16L, 13L, 13L,
3L, 9L, 17L, 1L, 1L, 16L, 11L, 15L, 7L, 7L, 14L, 8L, 14L, 20L,
15L, 16L, 1L, 12L, 9L, 16L), .Label = c("<A", "A", "B", "C",
"D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P",
"Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"), class = "factor")), .Names = c("shortname",
"value"), row.names = c(NA, 1156L), class = "data.frame")
最佳答案
您可以通过以下方式获得所需的行为:
ggplot(sample, aes(value, colour=shortname, group=shortname)) + geom_density()
as.numeric
中没有这些标签。解决方案:
关于r - 使用因子使用 ggplot2 创建密度图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14024236/
我有这种格式的data.frame: 'data.frame': 244 obs. of 1 variable: $ names: Factor w/ 244 levels "ERA","BA
这就是问题: write a Java Program that accepts a String and an integer stretch factor P as parameters and
该示例显示了不同工厂的产量测量值,第一列表示工厂最后一列是生产量。 factory % mutate(factory=fct_lump(factory,2)) factory produc
我正在使用分类变量运行回归并遇到 this question .在这里,用户想要为每个虚拟对象添加一列。这让我很困惑,因为我虽然列有很长的数据,包括使用 as.factor() 存储的所有虚拟数据。相
假设在 R 中有一个 Data.Frame 对象,其中所有字符列都已转换为因子。然后我需要“修改”与数据帧中某一行相关联的值——但将其编码为一个因子。我首先需要提取一行,所以这就是我正在做的。这是一个
利用下面的可重现数据, dat head(dat) Bin Number 1 1 3 2 1 5 3 1 4 4 1 5 5 1
我有一组包含多个变量的数据。其中一个变量 - 阶乘包含组的名称 - A、B、C 等。其余变量是数字。 > data1 Group Value 1 A 23 2 A
我有一组编码为二项式的变量。 Pre VALUE_1 VALUE_2 VALUE_3 VALUE_4 VALUE_5 VALUE_6 VALUE_7 VALUE_8 1 1 0
我的问题与 this one 非常相似和 this other one ,但我的数据集有点不同,我似乎无法使这些解决方案起作用。如果我误解了什么并且这个问题是多余的,请原谅。 我有一个这样的数据集:
我一直在尝试生成一个带有离散 x 变量的堆积面积图(因为我想显示财政年度,即“2013/14”,而不是日历年)。但是,将 x 轴变量转换为一个因子会阻止在最终图表中呈现 geom。 有解决办法吗? l
只是一个简单的问题来确认我的想法, 使用负载因子 1.0 的哈希表的复杂性将是二次时间,用以下符号 O(n^2) 表示。 这是因为必须不断调整大小并一遍又一遍地插入。如果我错了,请纠正我。 谢谢 最佳
我正在尝试使用 kaggle 的一些数据集进行房价预测。 这是我的代码 library(ggplot2) dataset=read.csv('train(1).csv') dataset_test=r
我正在用 Angular 构建一个类似咆哮的 UI。我想将其公开为工厂(或服务),以使其在我的 Controller 中可用。调用 Growl.add 将导致 DOM 发生变化,所以看起来我应该有一个
我正在尝试将 pandas 数据框的一列转换为因数,因为我试图在 R 中调用的函数需要因数。 pandas2ri.activate() #second column of labels has
我正在尝试使用 plotly 绘制一个以字符串(组合数)作为 x 轴的条形图。 (“1”、“2”、“3”、“4 - 5”、“6 - 8”、“9 - 13”、“14 - 21”、“22 - 34”、“3
我有一个包含 NA 的数据集。 此外,它还有一些列需要factors()。 我正在使用 caret 包中的 rfe() 函数来选择变量。 似乎 rfe() 中的 functions= 参数使用 lmF
我有一个 .csv 文件,其中每个字段用于日期时间、日期和时间。 最初它们都是字符字段,我已经相应地转换了它们。 在我的代码结束时,如果我这样做: str(data) 我会得到 datetime: P
我有一个如下所示的数据集: data.flu data.flu chills runnyNose headache fever flu 1 1 0 M
我正在使用 QMainWindow 在 C++ 中手动布置 Qt 应用程序。我希望在屏幕底部有两个并排停靠的小部件,但我希望它们具有不成比例的宽度。目前,我只能让它们具有相同的宽度。有没有办法设置拉伸
我需要通过在两个主机(2 个 Java 进程)之间发送合成调用来计算 VOIP 质量。我应该找出 MOS、抖动和 R 因子(VOIP 质量指标)。根据目前的研究,我发现我应该在两台主机之间发送 RTP
我是一名优秀的程序员,十分优秀!