gpt4 book ai didi

r - 从大量等长字符串中为每个字符创建一个出现矩阵

转载 作者:行者123 更新时间:2023-12-04 11:51:52 25 4
gpt4 key购买 nike

我正在尝试创建一个矩阵,它根据向量中的大量字符串为我提供每个位置的每个元素的出现次数。

我有以下宠物示例和潜在的解决方案:

set.seed(42)
seqs <- sapply(1:10, FUN = function(x) { paste(sample(LETTERS, size = 11, replace = T), collapse = "") })
test <- lapply(seqs, FUN = function(s) {
do.call(cbind, lapply(LETTERS, FUN = function(ch) {
grepl(ch, unlist(strsplit(s, split="")))
}))
})

testR <- Reduce("+", test)
seqs
# [1] "XYHVQNTDRSL" "SYGMYZDMOXD" "ZYCNKXLVTVK" "RAVAFXPJLAZ" "LYXQZQIJKUB" "TREGNRZTOWE" "HVSGBDFMFSA" "JNAPEJQUOGC" "CHRAFYYTINT"
#[10] "QQFFKYZTTNA"
testR
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23]
[1,] 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0
[2,] 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0
[3,] 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
[4,] 2 0 0 0 0 1 2 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0
[5,] 0 1 0 0 1 2 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0
[6,] 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0
[7,] 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0
[8,] 0 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 3 1 1 0
[9,] 0 0 0 0 0 1 0 0 1 0 1 1 0 0 3 0 0 1 0 2 0 0 0
[10,] 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 0 1 1 1
[11,] 2 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
[,24] [,25] [,26]
[1,] 1 0 1
[2,] 0 4 0
[3,] 1 0 0
[4,] 0 0 0
[5,] 0 1 1
[6,] 2 2 1
[7,] 0 1 2
[8,] 0 0 0
[9,] 0 0 0
[10,] 1 0 0
[11,] 0 0 1

我试图强制自己不使用循环而是使用矢量化函数,但我不确定我的解决方案是否真的是一个好的(有效的)解决方案,或者我是否在某处感到困惑。如果现实生活中的数据以某种方式困惑(可悲的是情况确实如此),则调试也相当困难。

所以我的问题是,解决这个问题的好方法是什么?

编辑:按照 989 的轨迹,我对这里提出的解决方案进行了基准测试,数据大小更能代表手头的问题。
library(microbenchmark)
set.seed(42)
seqs <- sapply(1:10000, FUN = function(x) { paste(sample(LETTERS, size = 31, replace = T), collapse = "") })

f.posdef=function(){
test <- lapply(seqs, FUN = function(s) {
do.call(cbind, lapply(LETTERS, FUN = function(ch) {
grepl(ch, unlist(strsplit(s, split="")))
}))
})
(testR <- Reduce("+", test))
}

f.989=function() {
l <- lapply(seqs, function(x) {
m <- matrix(0, nchar(x), 26)
replace(m, cbind(seq(nchar(x)), match(strsplit(x, "")[[1]], LETTERS)), 1)
})
Reduce("+",l)
}

f.docendo1=function()
t(Reduce("+", lapply(strsplit(seqs, "", fixed = TRUE), function(xx)
table(factor(xx, levels = LETTERS), 1:31))))

f.docendo2=function()
t(table(do.call(cbind, strsplit(seqs, "", fixed = TRUE)), rep(1:31, 10000)))

f.akrun=function(){
strsplit(seqs, "") %>%
transpose %>%
map(unlist) %>%
setNames(seq_len(nchar(seqs[1]))) %>%
stack %>%
select(2:1) %>%
table
}

r <- f.posdef()

请注意,此基准测试与 989 之间的主要区别在于样本大小。
> all(r==f.989())
[1] TRUE
> all(r==f.docendo1())
[1] TRUE
> all(r==f.docendo2())
[1] TRUE
> all(r==f.akrun())
[1] FALSE
> res <- microbenchmark(f.posdef(), f.989(), f.docendo1(), f.docendo2(), f.akrun())
> autoplot(res)

benchmark plot

如图所示,akrun 的解决方案速度很快,但似乎不准确。因此金牌属于docendo的第二个解决方案。然而,可能值得注意的是,docendo 的两个解决方案以及 989 的建议都有关于样本字符串的长度/数量或 m <- matrix(0, nchar(x), 26) 中的字母大小的假设。

在样本字符串的大小/长度(即 seqs )的情况下,将额外调用 nchar这应该不会对运行时产生太大影响。如果这不是先验的,我不确定如何避免假设字母大小。

最佳答案

这是基 R 中的另一种方法,它比 OP 方法需要更少的循环:

t(Reduce("+", lapply(strsplit(seqs, "", fixed = TRUE), function(xx) 
table(factor(xx, levels = LETTERS), 1:11))))

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
# 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1
# 2 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 4 0
# 3 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0
# 4 2 0 0 0 0 1 2 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0
# 5 0 1 0 0 1 2 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1
# 6 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 2 2 1
# 7 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 2
# 8 0 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 3 1 1 0 0 0 0
# 9 0 0 0 0 0 1 0 0 1 0 1 1 0 0 3 0 0 1 0 2 0 0 0 0 0 0
# 10 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 0 1 1 1 1 0 0
# 11 2 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

或者,可能更有效:
t(table(do.call(cbind, strsplit(seqs, "", fixed = TRUE)), rep(1:nchar(seqs[1]), length(seqs))))

关于r - 从大量等长字符串中为每个字符创建一个出现矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44004703/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com