gpt4 book ai didi

r - 使用 facet_wrap 时 ggplot 重新排序更改

转载 作者:行者123 更新时间:2023-12-04 11:47:56 25 4
gpt4 key购买 nike

我正在尝试重新排序我的数据,然后使用 facet_wrap 绘制不同的结果。

当我使用以下内容时:

df %>% 
ggplot(aes(x = reorder(Feature, Gain), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip()

绘图“似乎”按预期工作,即条形图从最高到最低排序。但是,当我添加代码的 facet_wrap 部分时,绘图会发生变化。

df %>% 
ggplot(aes(x = reorder(Feature, Gain), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip() +
facet_wrap(~Model_Name)

我知道原因是我正在根据整个数据集重新排序数据,然后当我应用这些方面时,这就是它们发生变化的原因。我如何根据每个方面使用重新排序,以便每个方面总是在顶部有最高的结果,在底部有最低的结果?

数据:

df <- structure(list(Model_Name = c("1", "1", "1", "1", "1", "1", "1", 
"1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2",
"2", "2", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3",
"4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4"), Feature = c("EBIT.FinExp",
"DailySALES.EBIT", "logTA", "TL.TA", "CF.NCL", "TL.EQ", "CL.FinExp",
"CA.CL", "CA.TA", "EQ.Turnover", "SALES.WC", "logTA", "EBIT.FinExp",
"TL.TA", "EQ.Turnover", "CL.FinExp", "CA.TA", "TL.EQ", "CF.NCL",
"CA.CL", "DailySALES.EBIT", "SALES.WC", "logTA", "TL.TA", "EBIT.FinExp",
"TL.EQ", "CA.TA", "CL.FinExp", "EQ.Turnover", "CA.CL", "SALES.WC",
"DailySALES.EBIT", "CF.NCL", "logTA", "TL.TA", "TL.EQ", "CA.TA",
"CL.FinExp", "EQ.Turnover", "SALES.WC", "EBIT.FinExp", "CA.CL",
"DailySALES.EBIT", "CF.NCL"), Gain = c(0.319661022583932, 0.1459294841629,
0.142850179507091, 0.132765644191462, 0.0810216258897842, 0.0427415667709611,
0.0398929568321689, 0.038977683436756, 0.0235407288506038, 0.0177791651224692,
0.0148399426518705, 0.314495967867966, 0.194685182626366, 0.140733861259937,
0.0882380538977587, 0.0574929508879213, 0.0465452034142143, 0.0409126137922541,
0.0356003145682383, 0.0300757198164929, 0.029110471062585, 0.0221096608062664,
0.397020881823162, 0.143886886033381, 0.0915945975581377, 0.0699399814849332,
0.0633989152531246, 0.0608103962252964, 0.0512060957146738, 0.039355302553383,
0.0342297915015821, 0.0255241325884949, 0.0230330192638316, 0.38056229652222,
0.133231017163002, 0.0941844467535513, 0.0788600251129408, 0.0749519130106986,
0.0521907558198196, 0.0498475034974015, 0.0433895506999798, 0.0428104836292833,
0.0273526930263904, 0.0226193147647128), Cover = c(0.121943691387452,
0.0816186622203503, 0.234722543977359, 0.171634330582589, 0.0892304037319097,
0.0315468239516433, 0.0963968265880753, 0.0607290547248047, 0.0452337706760221,
0.0279521362780545, 0.0389917558817403, 0.227632942870328, 0.0878012612621709,
0.132093360664219, 0.0904386168640914, 0.109620838100331, 0.0915521745157415,
0.0239824724837257, 0.0573896745122457, 0.0601712810342116, 0.0639922580136253,
0.0553251196793097, 0.231725278554576, 0.103655920813926, 0.0814217672437898,
0.0491388474456846, 0.118941515640324, 0.0964283304134241, 0.0947214507718667,
0.0741550093313701, 0.0558597882883057, 0.0425784549213668, 0.0513736365753665,
0.201160082759667, 0.0826529411502635, 0.0493477928111075, 0.111213779712931,
0.110738868440133, 0.102709355008914, 0.0534211062162858, 0.101876672415992,
0.067425714362272, 0.0636683097957719, 0.0557853773266621), Frequency = c(0.104681978798587,
0.0940812720848057, 0.152385159010601, 0.125883392226148, 0.0936395759717314,
0.0415194346289753, 0.0954063604240283, 0.0874558303886926, 0.075530035335689,
0.0636042402826855, 0.0658127208480565, 0.141749246014649, 0.0896165445928479,
0.112882378285222, 0.0934941835415769, 0.0947867298578199, 0.100387763894873,
0.042654028436019, 0.0779836277466609, 0.0822921154674709, 0.0861697544161999,
0.0779836277466609, 0.157513835674755, 0.0906768837803321, 0.0936568752660707,
0.0510855683269476, 0.108982545764155, 0.102596849723287, 0.0932311621966794,
0.0872711792252022, 0.0825883354618987, 0.0723712217965091, 0.0600255427841635,
0.121157323688969, 0.0822784810126582, 0.0592224231464738, 0.117088607594937,
0.0981012658227848, 0.099005424954792, 0.0981012658227848, 0.0958408679927667,
0.0840867992766727, 0.0782097649186257, 0.0669077757685353)), row.names = c(NA,
-44L), class = c("data.table", "data.frame"))

最佳答案

Github 上 David Robinson 的个人 R 包中有一个名为 reorder_within 的好函数,drlib .它旨在完全满足您的需求。

remotes::install_github("dgrtwo/drlib")
df %>%
ggplot(aes(x = drlib::reorder_within(Feature, Gain, within = Model_Name), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip() +
facet_wrap(~Model_Name, scales = "free")

您可以使用下面的 stats::reorder 自行实现他的代码,但希望在应有的地方给予信任。

df %>% 
ggplot(aes(x = stats::reorder(paste(Feature, Model_Name, sep = "__"), Gain), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip() +
facet_wrap(~Model_Name, scales = "free")

关于r - 使用 facet_wrap 时 ggplot 重新排序更改,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59827896/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com