- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
关于 pandas标签,我经常看到用户询问有关在 Pandas 中融合数据框的问题。我将尝试针对此主题进行规范的问答(自我回答)。
我要澄清:
pd.melt(df)
pivot_table
所必需的。以及。import pandas as pd
df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
'English': ['C', 'B', 'B', 'A+', 'F', 'A'],
'Age': [13, 16, 16, 15, 15, 13]})
>>> df
Name Math English Age
0 Bob A+ C 13
1 John B B 16
2 Foo A B 16
3 Bar F A+ 15
4 Alex D F 15
5 Tom C A 13
>>>
问题:
Name Age Subject Grade
0 Bob 13 English C
1 John 16 English B
2 Foo 14 English B
3 Bar 15 English A+
4 Alex 17 English F
5 Tom 12 English A
6 Bob 13 Math A+
7 John 16 Math B
8 Foo 14 Math A
9 Bar 15 Math F
10 Alex 17 Math D
11 Tom 12 Math C
我想将其转置,以便一列是每个主题,而其他列将是学生的重复姓名以及年龄和分数。
Subject
栏目只有
Math
,我想过滤掉
English
柱子:
Name Age Subject Grades
0 Bob 13 Math A+
1 John 16 Math B
2 Foo 16 Math A
3 Bar 15 Math F
4 Alex 15 Math D
5 Tom 13 Math C
我希望输出像上面那样。
value Name Subjects
0 A Foo, Tom Math, English
1 A+ Bob, Bar Math, English
2 B John, John, Foo Math, English, English
3 C Tom, Bob Math, English
4 D Alex Math
5 F Bar, Alex Math, English
我需要订购它,名称用逗号分隔,还有
Subjects
分别以相同的顺序用逗号隔开
print(df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades'))
成为:
Name Age Subject Grades
0 Bob 13 Math A+
1 John 16 Math B
2 Foo 16 Math A
3 Bar 15 Math F
4 Alex 15 Math D
5 Tom 13 Math C
6 Bob 13 English C
7 John 16 English B
8 Foo 16 English B
9 Bar 15 English A+
10 Alex 15 English F
11 Tom 13 English A
那么我将如何将其转换回原始数据帧,如下所示:
Name Math English Age
0 Bob A+ C 13
1 John B B 16
2 Foo A B 16
3 Bar F A+ 15
4 Alex D F 15
5 Tom C A 13
我该怎么做呢?
Name Subject Grades
0 Alex Math, English D, F
1 Bar Math, English F, A+
2 Bob Math, English A+, C
3 Foo Math, English A, B
4 John Math, English B, B
5 Tom Math, English C, A
我想要一个像上面这样的数据框。
Column Value
0 Name Bob
1 Name John
2 Name Foo
3 Name Bar
4 Name Alex
5 Name Tom
6 Math A+
7 Math B
8 Math A
9 Math F
10 Math D
11 Math C
12 English C
13 English B
14 English B
15 English A+
16 English F
17 English A
18 Age 13
19 Age 16
20 Age 16
21 Age 15
22 Age 15
23 Age 13
我想要一个像上面这样的数据框。所有列作为值。
最佳答案
Pandas 版本低于 0.20.0 的用户请注意,我将使用 df.melt(...)
对于我的示例,但您的版本对于 df.melt
来说太低了,您需要使用 pd.melt(df, ...)
反而。
文档引用:
这里的大多数解决方案都将与 melt
一起使用,所以要知道方法 melt
,见 documentaion解释
Unpivot a DataFrame from wide to long format, optionally leavingidentifiers set.
This function is useful to massage a DataFrame into a format where oneor more columns are identifier variables (id_vars), while all othercolumns, considered measured variables (value_vars), are “unpivoted”to the row axis, leaving just two non-identifier columns, ‘variable’and ‘value’.
Parameters
id_vars : tuple, list, or ndarray, optional
Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
var_name : scalar
Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.
value_namescalar, default ‘value’
Name to use for the ‘value’ column.
col_level : int or str, optional
If columns are a MultiIndex then use this level to melt.
ignore_index : bool, default True
If True, original index is ignored. If False, the original index is retained. Index labels will be repeatedas necessary.
New in version 1.1.0.
Math
和 English
列并复制数据帧(更长)。Subject
这是 Grades
的主题列值分别。melt
的简单逻辑功能确实。
pd.DataFrame.melt
解决使用以下代码:
print(df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades'))
此代码通过
id_vars
论据
['Name', 'Age']
,然后自动
value_vars
将设置为其他列(
['Math', 'English']
),该列被转置为该格式。
stack
解决问题 1像下面这样:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index(name="Grade")
.rename(columns={"level_2": "Subject"})
.sort_values("Subject")
.reset_index(drop=True)
)
此代码设置
Name
和
Age
列作为索引并堆叠其余的列
Math
和
English
, 并重置索引并分配
Grade
作为列名,然后重命名另一列
level_2
至
Subject
然后按
Subject
排序列,然后最终再次重置索引。
Name Age Subject Grade
0 Bob 13 English C
1 John 16 English B
2 Foo 14 English B
3 Bar 15 English A+
4 Alex 17 English F
5 Tom 12 English A
6 Bob 13 Math A+
7 John 16 Math B
8 Foo 14 Math A
9 Bar 15 Math F
10 Alex 17 Math D
11 Tom 12 Math C
问题2:
Math
中过滤列,这次是
value_vars
可以使用参数,如下所示:
print(
df.melt(
id_vars=["Name", "Age"],
value_vars="Math",
var_name="Subject",
value_name="Grades",
)
)
或者我们也可以使用
stack
带列规范:
print(
df.set_index(["Name", "Age"])[["Math"]]
.stack()
.reset_index(name="Grade")
.rename(columns={"level_2": "Subject"})
.sort_values("Subject")
.reset_index(drop=True)
)
这两种解决方案都给出:
Name Age Subject Grade
0 Bob 13 Math A+
1 John 16 Math B
2 Foo 16 Math A
3 Bar 15 Math F
4 Alex 15 Math D
5 Tom 13 Math C
问题 3:
melt
解决和
groupby
,使用
agg
功能与
', '.join
,如下图:
print(
df.melt(id_vars=["Name", "Age"])
.groupby("value", as_index=False)
.agg(", ".join)
)
它熔化数据框,然后按等级分组并聚合它们并通过逗号将它们连接起来。
stack
也可以用
stack
来解决这个问题和
groupby
像下面这样:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index()
.rename(columns={"level_2": "Subjects", 0: "Grade"})
.groupby("Grade", as_index=False)
.agg(", ".join)
)
此
stack
函数只是以等效于
melt
的方式转置数据帧,然后重置索引,重命名列和组以及聚合。
Grade Name Subjects
0 A Foo, Tom Math, English
1 A+ Bob, Bar Math, English
2 B John, John, Foo Math, English, English
3 C Bob, Tom English, Math
4 D Alex Math
5 F Bar, Alex Math, English
问题 4:
df = df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')
pivot_table
解决,我们必须指定
pivot_table
参数,
values
,
index
,
columns
还有
aggfunc
.
print(
df.pivot_table("Grades", ["Name", "Age"], "Subject", aggfunc="first")
.reset_index()
.rename_axis(columns=None)
)
输出:
Name Age English Math
0 Alex 15 F D
1 Bar 15 A+ F
2 Bob 13 C A+
3 Foo 16 B A
4 John 16 B B
5 Tom 13 A C
融化的数据帧被转换回与原始数据帧完全相同的格式。
melt
解决和
groupby
像下面这样:
print(
df.melt(id_vars=["Name", "Age"], var_name="Subject", value_name="Grades")
.groupby("Name", as_index=False)
.agg(", ".join)
)
由
Name
融化和分组.
stack
:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index()
.groupby("Name", as_index=False)
.agg(", ".join)
.rename({"level_2": "Subjects", 0: "Grades"}, axis=1)
)
两个代码输出:
Name Subjects Grades
0 Alex Math, English D, F
1 Bar Math, English F, A+
2 Bob Math, English A+, C
3 Foo Math, English A, B
4 John Math, English B, B
5 Tom Math, English C, A
问题 6:
melt
解决并且不需要指定列,只需指定预期的列名:
print(df.melt(var_name='Column', value_name='Value'))
这融化了整个数据框
stack
:
print(
df.stack()
.reset_index(level=1)
.sort_values("level_1")
.reset_index(drop=True)
.set_axis(["Column", "Value"], axis=1)
)
两个代码输出:
Column Value
0 Age 16
1 Age 15
2 Age 15
3 Age 16
4 Age 13
5 Age 13
6 English A+
7 English B
8 English B
9 English A
10 English F
11 English C
12 Math C
13 Math A+
14 Math D
15 Math B
16 Math F
17 Math A
18 Name Alex
19 Name Bar
20 Name Tom
21 Name Foo
22 Name John
23 Name Bob
结论:
melt
是一个非常方便的功能,经常需要,一旦你遇到这些类型的问题,不要忘记尝试
melt
,它可以很好地解决您的问题。
pd.melt(df, ...)
而不是
df.melt(...)
.
关于python - 如何融化 Pandas 数据框?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68961796/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!