gpt4 book ai didi

python - 二维数组中每个对角线的最大值

转载 作者:行者123 更新时间:2023-12-04 11:46:39 25 4
gpt4 key购买 nike

我有数组,需要动态窗口最大滚动差异。

a = np.array([8, 18, 5,15,12])
print (a)
[ 8 18 5 15 12]

所以首先我自己创造差异:
b = a - a[:, None]
print (b)
[[ 0 10 -3 7 4]
[-10 0 -13 -3 -6]
[ 3 13 0 10 7]
[ -7 3 -10 0 -3]
[ -4 6 -7 3 0]]

然后将上三角矩阵替换为0:
c = np.tril(b)
print (c)
[[ 0 0 0 0 0]
[-10 0 0 0 0]
[ 3 13 0 0 0]
[ -7 3 -10 0 0]
[ -4 6 -7 3 0]]

最后需要每个对角线的最大值,所以这意味着:
max([0,0,0,0,0]) = 0  
max([-10,13,-10,3]) = 13
max([3,3,-7]) = 3
max([-7,6]) = 6
max([-4]) = -4

因此,预期输出为:
[0, 13, 3, 6, -4]

什么是一些好的矢量化解决方案?还是有可能以其他方式获得预期的输出?

最佳答案

不确定这在考虑所涉及的高级索引方面究竟有多有效,但这是做到这一点的一种方法:

import numpy as np

a = np.array([8, 18, 5, 15, 12])
b = a[:, None] - a
# Fill lower triangle with largest negative
b[np.tril_indices(len(a))] = np.iinfo(b.dtype).min # np.finfo for float
# Put diagonals as rows
s = b.strides[1]
diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
# Get maximum from each row and add initial zero
c = np.r_[0, diags.max(1)]
print(c)
# [ 0 13 3 6 -4]

编辑:

另一个选择(也许不是您想要的)只是使用Numba,例如:

import numpy as np
import numba as nb

def max_window_diffs_jdehesa(a):
a = np.asarray(a)
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
out = np.full_like(a, dtinf.min)
_pwise_diffs(a, out)
return out

@nb.njit(parallel=True)
def _pwise_diffs(a, out):
out[0] = 0
for w in nb.prange(1, len(a)):
for i in range(len(a) - w):
out[w] = max(a[i] - a[i + w], out[w])

a = np.array([8, 18, 5, 15, 12])
print(max_window_diffs(a))
# [ 0 13 3 6 -4]

将这些方法与原始方法进行比较:

import numpy as np
import numba as nb

def max_window_diffs_orig(a):
a = np.asarray(a)
b = a - a[:, None]
out = np.zeros(len(a), b.dtype)
out[-1] = b[-1, 0]
for i in range(1, len(a) - 1):
out[i] = np.diag(b, -i).max()
return out

def max_window_diffs_jdehesa_np(a):
a = np.asarray(a)
b = a[:, None] - a
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
b[np.tril_indices(len(a))] = dtinf.min
s = b.strides[1]
diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
return np.concatenate([[0], diags.max(1)])

def max_window_diffs_jdehesa_nb(a):
a = np.asarray(a)
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
out = np.full_like(a, dtinf.min)
_pwise_diffs(a, out)
return out

@nb.njit(parallel=True)
def _pwise_diffs(a, out):
out[0] = 0
for w in nb.prange(1, len(a)):
for i in range(len(a) - w):
out[w] = max(a[i] - a[i + w], out[w])

np.random.seed(0)
a = np.random.randint(0, 100, size=100)
r = max_window_diffs_orig(a)
print((max_window_diffs_jdehesa_np(a) == r).all())
# True
print((max_window_diffs_jdehesa_nb(a) == r).all())
# True

%timeit max_window_diffs_orig(a)
# 348 µs ± 986 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit max_window_diffs_jdehesa_np(a)
# 91.7 µs ± 1.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit max_window_diffs_jdehesa_nb(a)
# 19.7 µs ± 88.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

np.random.seed(0)
a = np.random.randint(0, 100, size=10000)
%timeit max_window_diffs_orig(a)
# 651 ms ± 26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_np(a)
# 1.61 s ± 6.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_nb(a)
# 22 ms ± 967 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

对于较小的阵列,第一个可能会更好一些,但对于较大的阵列则效果不佳。另一方面,Numba在所有情况下都相当不错。

关于python - 二维数组中每个对角线的最大值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59172699/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com