- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试从 R sparklyr 连接到 S3 存储桶。我能够将本地文件读入 spark 上下文。但是尝试连接 s3 似乎是个问题,抛出一大堆错误。这是使用的代码列表。
注意:单个 s3 存储桶有多个 csv 文件遵循相同的架构。
library( sparklyr )
library( tidyverse )
sparklyr :: spark_install ( version = "2.0.2" , hadoop_version = "2.7" )
sparklyr::spark_install( version = "2.0.2" , hadoop_version = "2.7" )
Sys.setenv ( AWS_ACCESS_KEY_ID = "xxxx" )
Sys.setenv ( AWS_SECRET_ACCESS_KEY = "xxxx" )
Sys.setenv ( AWS_DEFAULT_REGION = "ap-southeast-1" )
Spark_config <- sparklyr :: spark_config ()
sc <- sparklyr :: spark_connect ( master = "local" ,config = Spark_config)
files = "s3n://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=files,infer_schema = TRUE)
spark_disconnect(sc)
非常感谢这里的任何帮助。
这是使用 s3a://的错误转储
Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
使用 s3n://的错误转储
Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
最佳答案
已解决问题。这是代码片段。注意:需要验证正确的 JVM 正在运行。我在 64 位机器上使用了 32 位 jvm,因为 64 位机器不起作用。 - Spark 版本 - 2.0 - hadoop 版本 - 2.7
# install.packages("devtools")
# devtools::install_github("rstudio/sparklyr")
library(sparklyr)
library(dplyr)
# conf$sparklyr.defaultPackages <- "org.apache.hadoop:hadoop-aws:2.7.3"
# config$spark.executor.memory <- "4g"
sc <- spark_connect(master = "local",config = conf)
#Get spark context
ctx <- sparklyr::spark_context(sc)
#Use below to set the java spark context
jsc <- invoke_static(
sc,
"org.apache.spark.api.java.JavaSparkContext",
"fromSparkContext",
ctx
)
#set the s3 configs:
hconf <- jsc %>% invoke("hadoopConfiguration")
hconf %>% invoke("set","fs.s3a.access.key", "xxxx")
hconf %>% invoke("set","fs.s3a.secret.key", "xxxx")
# check if spar session is active
sparklyr::spark_connection_is_open(sc=sc)
small_file = "s3a://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=small_file,infer_schema = TRUE)
spark_disconnect(sc)
关于r - 与 S3 存储桶的 Sparklyr 连接抛出错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45190188/
我正在运行一个辅助角色,并检查 Azure 上托管的存储中是否存在数据。当我将连接字符串用于经典类型的存储时,我的代码可以正常工作,但是当我连接到 V2 Azure 存储时,它会抛出此异常。 “远程服
在我的应用程序的主页上,我正在进行 AJAX 调用以获取应用程序各个部分所需的大量数据。该调用如下所示: var url = "/Taxonomy/GetTaxonomyList/" $.getJSO
大家好,我正在尝试将我的商店导入我的 Vuex Route-Gard。 路由器/auth-guard.js import {store} from '../store' export default
我正在使用 C# 控制台应用程序 (.NET Core 3.1) 从 Azure Blob 存储读取大量图像文件并生成这些图像的缩略图。新图像将保存回 Azure,并将 Blob ID 存储在我们的数
我想将 Mlflow 设置为具有以下组件: 后端存储(本地):在本地使用 SQLite 数据库存储 Mlflow 实体(run_id、params、metrics...) 工件存储(远程):使用 Az
我正在使用 C# 控制台应用程序 (.NET Core 3.1) 从 Azure Blob 存储读取大量图像文件并生成这些图像的缩略图。新图像将保存回 Azure,并将 Blob ID 存储在我们的数
我想将 Mlflow 设置为具有以下组件: 后端存储(本地):在本地使用 SQLite 数据库存储 Mlflow 实体(run_id、params、metrics...) 工件存储(远程):使用 Az
我的 Windows 计算机上的本地文件夹中有一些图像。我想将所有图像上传到同一容器中的同一 blob。 我知道如何使用 Azure Storage SDKs 上传单个文件BlockBlobServi
我尝试发出 GET 请求来获取我的 Azure Blob 存储帐户的帐户详细信息,但每次都显示身份验证失败。谁能判断形成的 header 或签名字符串是否正确或是否存在其他问题? 代码如下: cons
这是用于编写 JSON 的 NeutralinoJS 存储 API。是否可以更新 JSON 文件(推送数据),而不仅仅是用新的 JS 对象覆盖数据。怎么做到的??? // Javascript
我有一个并行阶段设置,想知道是否可以在嵌套阶段之前运行脚本,所以像这样: stage('E2E-PR-CYPRESS') { when { allOf {
我想从命令行而不是从GUI列出VirtualBox VM的详细信息。我对存储细节特别感兴趣。 当我在GUI中单击VM时,可以看到包括存储部分在内的详细信息: 但是到目前为止,我还没有找到通过命令行执行
我有大约 3500 个防洪设施,我想将它们表示为一个网络来确定流动路径(本质上是一个有向图)。我目前正在使用 SqlServer 和 CTE 来递归检查所有节点及其上游组件,只要上游路径没有 fork
谁能告诉我 jquery data() 在哪里存储数据以及何时删除以及如何删除? 如果我用它来存储ajax调用结果,会有性能问题吗? 例如: $("body").data("test", { myDa
有人可以建议如何为 Firebase 存储中的文件设置备份。我能够备份数据库,但不确定如何为 firebase 存储中的文件(我有图像)设置定期备份。 最佳答案 如何进行 Firebase 存储的本地
我最近开始使用 firebase 存储和 firebase 功能。现在我一直在开发从功能到存储的文件上传。 我已经让它工作了(上传完成并且文件出现在存储部分),但是,图像永远保持这样(永远在右侧加载)
我想只允许用户将文件上传到他们自己的存储桶中,最大文件大小为 1MB,仍然允许他们删除文件。我添加了以下内容: match /myusers/{userId}/{allPaths=**} { al
使用生命周期管理策略将容器的内容从冷访问层移动到存档。我正在尝试以下策略,希望它能在一天后将该容器中的所有文件移动到存档层,但事实并非如此在职的。我设置了选择标准“一天未使用后”。 这是 json 代
对于连接到 Azure 存储端点,有 http 和 https 两个选项。 第一。 https 会带来开销,可能是 5%-10%,但我不支付同一个数据中心的费用。 第二。 http 更快,但 Auth
有人可以帮我理解这一点吗?我创建了Virtual Machine in Azure running Windows Server 2012 。我注意到 Azure 自动创建了一个存储帐户。当我进入该存
我是一名优秀的程序员,十分优秀!