gpt4 book ai didi

r - 在组内计算值变化前后的值,为每个独特的转变生成新变量

转载 作者:行者123 更新时间:2023-12-04 11:28:44 25 4
gpt4 key购买 nike

我正在寻找一种方法,在 id 组内,计算数据 datatblTF 值偏移的唯一出现次数。

我想从 TF10o1。计数将存储在新变量 PM## 中,以便 PM## 保存 TF 中的每个唯一移位,在加号和减号。下面的 MWE 导致了晚上 7 点的结果,但我的生产数据可以有 15 个或更多类次。如果 TF 值在 NA 之间没有变化,我想将其标记为 0

这个问题类似于a question I previously asked ,但关于 TF 独立的最后一部分是新的。两者 UwePsidom使用 data.table here 为最初的问题提供了优雅的答案并使用 tidyverse here . after conferencing with Uwe ,我发布了我的问题的这个稍微修改过的版本。

If this question violates any SO policies please let me know and I'll be happy to reopen my initial question or append this an bounty-issue.

用一个最小的工作示例 来说明我的问题。我有这样的数据,

我有什么,

# install.packages(c("tidyverse"), dependencies = TRUE)
library(tibble)
tbl <- tibble(id = c(rep(10L, 17L), rep(0L, 13L), rep(1L, 10L)),
TF = c(NA, NA, 0, NA, 0, NA, 1, 1, 1, 1, 1, NA, 1, 0, 1, 0, 1, NA, 0L, NA, 0L,
0L, 1L, 1L, 1L, 0L, 0L, NA, NA, 0L, NA, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA, 1L))
tbl %>% print(n=18)
#> # A tibble: 40 x 2
#> id TF
#> <int> <dbl>
#> 1 10 NA
#> 2 10 NA
#> 3 10 0
#> 4 10 NA
#> 5 10 0
#> 6 10 NA
#> 7 10 1
#> 8 10 1
#> 9 10 1
#> 10 10 1
#> 11 10 1
#> 12 10 NA
#> 13 10 1
#> 14 10 0
#> 15 10 1
#> 16 10 0
#> 17 10 1
#> 18 0 NA
#> # ... with 22 more rows

我想得到什么,

tblPM <- structure(list(id = c(10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), TF = c(NA, NA, 0, NA, 0, NA, 1, 1, 1, 1, 1,
NA, 1, 0, 1, 0, 1, NA, 0, NA, 0, 0, 1, 1, 1, 0, 0,
NA, NA, 0, NA, 0, 0, 0, 1, 1, 1, 0, NA, 1), PM01 = c(NA,
NA, 0L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -3L,
-2L, -1L, 1L, 2L, 3L, NA, NA, NA), PM02 = c(NA, NA, NA, NA, 0L,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -2L,
-1L, 1L, 2L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, -3L, -2L,
-1L, 1L, NA, NA), PM03 = c(NA, NA, NA, NA, NA, NA, 0L, 0L, 0L,
0L, 0L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -3L, -2L,
-1L, 1L, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0L), PM04 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
-1L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 0L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), PM05 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1L, 1L, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA), PM06 = c(NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, -1L, 1L, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA), PM07 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, -1L, 1L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
)), .Names = c("id", "TF", "PM01", "PM02", "PM03", "PM04", "PM05",
"PM06", "PM07"), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -40L
))


tblPM %>% print(n=18)
#> # A tibble: 40 x 9
#> id TF PM01 PM02 PM03 PM04 PM05 PM06 PM07
#> <int> <dbl> <int> <int> <int> <int> <int> <int> <int>
#> 1 10 NA NA NA NA NA NA NA NA
#> 2 10 NA NA NA NA NA NA NA NA
#> 3 10 0 0 NA NA NA NA NA NA
#> 4 10 NA NA NA NA NA NA NA NA
#> 5 10 0 NA 0 NA NA NA NA NA
#> 6 10 NA NA NA NA NA NA NA NA
#> 7 10 1 NA NA 0 NA NA NA NA
#> 8 10 1 NA NA 0 NA NA NA NA
#> 9 10 1 NA NA 0 NA NA NA NA
#> 10 10 1 NA NA 0 NA NA NA NA
#> 11 10 1 NA NA 0 NA NA NA NA
#> 12 10 NA NA NA NA NA NA NA NA
#> 13 10 1 NA NA NA -1 NA NA NA
#> 14 10 0 NA NA NA 1 -1 NA NA
#> 15 10 1 NA NA NA NA 1 -1 NA
#> 16 10 0 NA NA NA NA NA 1 -1
#> 17 10 1 NA NA NA NA NA NA 1
#> 18 0 NA NA NA NA NA NA NA NA
#> # ... with 22 more rows

identical([some solution], tblPM)
#> [1] TRUE

更新 w/microbenchmark 2018-01-24 14:20:18Z,

感谢 Fierr 和 Chris 花时间梳理逻辑并提交答案。启发了我 this setup我已经计算了他们功能的小型微基准比较。我将 Fierr 的答案放入函数tidyverse_Fierr()并将 Chris 的答案放入dt_Chris()`(如果有人想要确切的函数,请告诉我,我会添加他们在这里。

经过一些小的调整后,当与 tblPM 匹配时,它们都相同,即

identical(tblPM, tidyverse_Fierr(tbl))
#> [1] TRUE
identical(tblPM, dt_Chris(tbl))
#> [1] TRUE

现在进行快速微基准测试,

df_test <- bind_rows(rep(list(tbl), 111))
microbenchmark::microbenchmark(tidyverse_Fierr(df_test), dt_Chris(df_test), times = 3*1)
#> Unit: milliseconds
#> expr min mean median uq max neval cld
#> tidyverse_Fierr(df_test) 19503.366 20171.268 20080.99 20505.219 20929.4489 3 b
#> dt_Chris(df_test) 199.165 233.924 203.72 251.304 298.8887 3 a

有趣的是,tidy_method 在这个 kinda similar comparison 中出现得更快.

最佳答案

这是一个脚本方法 - 考虑到每个案例的自定义处理量(TF = NA,uniqueN(TF)= 1,uniqueN(TF)= 2,我认为这可能比 dplyr 链更容易实现. 应该相当快,因为​​它都是基于 data.table 的。愿意接受有关如何改进的建议!

随着所需 PM 列数量的增加,这将自动扩展 - 正如我在下面评论的那样,我建议去掉列中的 0 前缀,因为在某些情况下你可能会达到 10^2..n会撞到 PM001 的列。

library(data.table)
tbl3 <- data.table(id = c(rep(10L, 17L), rep(0L, 13L), rep(1L, 10L)),
TF = c(NA, NA, 0L, NA, 0L, NA, 1L, 1L, 1L, 1L, 1L, NA, 1L, 0L, 1L, 0L, 1L, NA, 0L, NA, 0L,
0L, 1L, 1L, 1L, 0L, 0L, NA, NA, 0L, NA, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA, 1L))


# create index to untimately join back to
tbl3[, row_idx := .I]

# all transformations on a replicated data.table
tbl3_tmp <- copy(tbl3)

# identify where the NA breaks occur - this splits each id into subgroups (id_group)
tbl3_tmp[, P_TF := shift(TF, 1, "lag", fill = NA), by = .(id)]
tbl3_tmp[, TF_break := is.na(TF) | is.na(P_TF)]
tbl3_tmp[, id_group := cumsum(TF_break), by = .(id)]

tbl3_tmp[, `:=`(TF_break = NULL, P_TF = NULL)] # above can be consolidated to one line which would make this line unneccesary - expanded for easier understanding
tbl3_tmp <- tbl3_tmp[!is.na(TF)] # NA rows can be safely ignored now - these will be all NA, and will be handled with the left join below

# find where subpatterns exist (runs of 0..1 or 1..0)
tbl3_tmp[, subpattern_break := TF != shift(TF, 1, "lag", fill = NA), by = .(id, id_group)]
tbl3_tmp[, subbreaks := sum(subpattern_break, na.rm = TRUE), by = .(id, id_group)] # if there are no breaks, we need to treat separately

# two cases: zero subbreaks and multiple subbreaks.
tbl3_zeros <- tbl3_tmp[subbreaks == 0]
tbl3_nonzeros <- tbl3_tmp[subbreaks > 0]

# for 1+ subbreaks, we need to double the rows - this allows us to easily create the PM_field both "forwards" and "backwards"
tbl3_nonzeros[is.na(subpattern_break), subpattern_break := TRUE]
tbl3_nonzeros[, subbreak_index := cumsum(subpattern_break), by = .(id, id_group)]

tbl3_nonzeros <- rbindlist(list(tbl3_nonzeros,tbl3_nonzeros), idcol = "base") # double the row

tbl3_nonzeros[base == 1 & subbreak_index %% 2 == 1, subbreak_index := subbreak_index + 1L] # round to nearest even
tbl3_nonzeros[base == 2 & subbreak_index %% 2 == 0, subbreak_index := subbreak_index + 1L] # round to nearest odd

# this creates an index when the subbreak starts - allows us to sequence PM properly
tbl3_nonzeros[,subbreak_start := min(row_idx), by = .(id, id_group, subbreak_index)]

# exclude the ends if there is only one unique TF value - might be able to get this to one line
tbl3_nonzeros[, TF_count := uniqueN(TF), by = .(id, id_group, subbreak_index)]
tbl3_nonzeros <- tbl3_nonzeros[TF_count > 1]

# create a 1..N column, subtract the index where the break occurs ,then add 1 to all 0+ values.
tbl3_nonzeros[,PM_field := 1:.N, by = .(id, id_group, subbreak_index)]
tbl3_nonzeros[, PM_field := PM_field - PM_field[which(diff(TF)!=0)[1]+1], by = .(id, id_group, subbreak_index)]
tbl3_nonzeros[PM_field >= 0, PM_field := PM_field + 1L] # base 1 after the break

# create subbreaks for zero groups
tbl3_zeros[,subbreak_start := min(row_idx), by = .(id, id_group)]

# bring zero and non zero case together
tbl3_zeros <- tbl3_zeros[, .(id, id_group, subbreak_start,row_idx = row_idx, PM_field = 0L)]
tbl3_nonzeros <- tbl3_nonzeros[,.(id, id_group, subbreak_start, row_idx, PM_field)]
tbl3_tmp <- rbindlist(list(tbl3_zeros, tbl3_nonzeros))

# Create header
tbl3_tmp <- tbl3_tmp[order(subbreak_start, PM_field)]
tbl3_tmp[, PM_header := paste0("PM0",cumsum(c(1,diff(subbreak_start)!=0)),sep = ""), by = .(id)] # I would remove 0 in PM0 here (kept for identical check)- inefficient to check if this will be 1, 2, 3 etc digits This could also be solved with; `paste0("PM", sprintf("%02d", cumsum(c(1, diff(subbreak_start) != 0))))`

# long to wide
tbl3_tmp <- dcast(tbl3_tmp, row_idx ~ PM_header, value.var = "PM_field", fun.aggregate = sum, fill = NA)

# merge back to initial dataframe
tblPM_frombase <- merge(tbl3, tbl3_tmp, by = "row_idx", all.x = TRUE)[, row_idx := NULL]

identical(tblPM, tblPM_frombase)
[1] TRUE

关于r - 在组内计算值变化前后的值,为每个独特的转变生成新变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48306565/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com